Определение энергетической эффективности аппаратов, установок и систем. Люди - энергетические пиявки. Люди - энергетические растения

Первое определение : «Энергетика – топливно-энергетический комплекс страны; охватывает получение, передачу, преобразование и использование различных видов энергии и энергетических ресурсов».

Второе определение : «Энергетика – область хозяйства, охватывающая энергетические ресурсы, выработку, преобразование, передачу, сохранение (в том числе экономию) и использование различных видов энергии. Энергетика — одна из форм природопользования. В перспективе технически возможный объем получаемой энергии практически не ограничен. Однако энергетика имеет существенные ограничения по термодинамическим (тепловым) лимитам биосферы. Размеры этих ограничений, видимо, близки к количеству энергии, усваиваемому живыми организмами биосферы в совокупности с другими энергетическими процессами, идущими на поверхности Земли (удвоение этих количеств энергии, вероятно, катастрофично или, во всяком случае, кризисно отразится на биосфере). Указанный …
лимит близок 140 ¸ 150·10 12 Вт (фотосинтетические процессы — 104·10 12 Вт , геотермальная энергия — 32·10 12 Вт ), но следует учитывать охлаждающее антропогенное воздействие, оцениваемое в 150·10 12 Вт , из которого необходимо вычитать отепляющее воздействие этой же деятельности, приближающееся к 100 ¸ 150·10 12 Вт ».

Еще одно понятие : «Электроэнергетика – отрасль электротехники, занимающаяся проблемами получения больших количеств электрической энергии, передачи этой энергии на расстояние и распределения ее между потребителями. Развитие электроэнергетики идет по пути строительства крупных электрических станций (тепловых, гидравлических, атомных), объединяемых между собой линиями электропередачи высокого напряжения в энергетические системы, улучшения технико-экономических показателей оборудования для производства, преобразования и передачи энергии».

Энергетика по сути зародившись в XX столетии стала жизнеобеспечивающей отраслью деятельности человека. Развитие энергопроизводства тесно связано с потреблением, образуя единую систему «производитель-потребитель». Энергопроизводство не может работать на склад. Оно наращивается вместе с потребностью в ней, а недостаток энергии может тормозить дальнейшее развитие цивилизации. По состоянию на начало XXI века энергетика удовлетворяет только около 80 % общего мирового потребления электроэнергии. Дефицит ее в отдельных регионах сдерживает дальнейшее развитие общества, прогресс отдельных национальностей и стран. Нехватка энергоресурсов в регионах мира влияет не только на материальное благосостояние общества, но и на политический климат, создавая различные варианты так называемого системного кризиса, провоцирующего вооруженные конфликты за обладание и контроль над природными запасами энергоисточников (природный газ, нефть и др.).

Научно-технический прогресс невозможен без существования и развития энергетики и электрификации. Для повышения производительности труда огромное значение имеет механизация и автоматизация производственных процессов, т.е. замена человеческого труда машинным. Однако подавляющее большинство технических средств механизации и автоматизации имеет электрическую основу. Особенно широкое применение электрическая энергия получила для привода в действие электрических моторов различных механизмов.

Понятие «энергетика» тесно связано с ключевым словом «энергия» : «Энергия – общая мера различных форм движения материи, рассматриваемых в физике. Для количественной характеристики качественно различных форм движения и соответствующих им взаимодействий вводят различные виды энергии: механическую, внутреннюю, гравитационную, электромагнитную, ядерную и т.д. В замкнутой системе выполняется закон сохранения энергии. В теории относительности установлена универсальная связь между полной энергией тела и его массой: , где с – скорость света в вакууме».

Наиболее часто человек пользуется двумя видами энергии — электрической и тепловой. Эти виды энергии человечеству необходимы, причем потребности в них возрастают с каждым годом. Вместе с тем запасы традиционных природных топлив (нефти, угля, газов и ядерного) конечны. Поэтому на сегодняшний день важно найти выгодные источники энергии, не только с точки зрения дешевизны топлива, но и с точки зрения простоты конструкции, эксплуатации, надежности материалов, необходимых для существования и долговечности электростанций.

Учитывая все вышесказанное схематически производство и потребление тепло- и электроэнергии можно представить следующим образом (рис.1.1). Существует некоторый источник генерации потенциальной энергии 1 (например, котел на ТЭС, реактор на АЭС, плотина на ГЭС). Генерация потенциальной энергии происходит за счет химических реакций при сжигании топлива; ядерных реакций расщепления атомов урана или естественного кругооборота воды в природе. Потенциальная энергия преобразовывается в механическую энергию вращения ротора паровой или гидравлической турбины 2. В свою очередь, механическая энергия преобразуется в электрическую в электрогенераторе 3. Затем электрическая энергия трансформируется в удобную для передачи на дальние расстояния форму на подстанции 4. Все эти преобразования происходят в едином комплексе, называемом электрической станцией 5. По линиям электрических передач 6 (помните знаменитые «ЛЭП-500 не простая линия») энергия может передаваться на расстояния, измеряемые сотнями километров к месту потребления. Здесь также установлены подстанции 7 для преобразования электрической энергии в форму удобную для потребления и передачи ее потребителю 8. Например, для бытового потребителя необходимо иметь электрический ток на входе с параметрами 220 В и 50 Гц . Тепловая энергия, как правило, производится на тепловых электростанциях 5 и через бойлерные установки 9 по тепловым сетям 10 насосами 11 направляется к потребителю 8.

Именно такое производство тепло- и электроэнергии для человека оказалось наиболее удобным и универсальным при потреблении. Конечно, хотелось бы иметь более индивидуальный и более удобный источник энергии, но его, к сожалению, нет. А как было бы приятно иметь маленький источник энергии в кармане, чтобы он всегда был «при мне», и чтобы его можно было бы по необходимости включать и выключать для обогрева, освещения, приготовления пищи или для просмотра и прослушивания телевизора, приемника и т.д. При этом можно забыть о существовании громадных малоэффективных электростанций, о добыче топлива для них, о строительстве дамб, перекрывающих реки и затапливающих плодородные земли. Однако в настоящее время это всего лишь мечты.

Рис. 1.1. Схема производства и потребления тепло- и электроэнергий

1 – генератор потенциальной энергии; 2 – турбина; 3 – электрогенератор; 4 – трансформаторы электроэнергии; 5 – электростанция; 6 – линии дальних передач; 7 – сетевые подстанции; 8 – потребитель; 9 – котельная – бойлерная тепловых сетей; 10 – тепловые сети; 11 – сетевой насос.

Проблема энергоснабжения прямо или косвенно затрагивает интересы всех жителей планеты, даже тех, кто о ней представления не имеет. Человек стал венцом творения природы лишь с того момента, когда он напрямую стал осваивать энергию; сначала механическую в виде палочного рычага. Однако на собственной мускулатуре далеко не уедешь, хотя Архимед и верил, что можно перевернуть весь мир, лишь бы был рычаг. Тепловая энергия, которая досталась человеку как подарок от Прометея (по легенде), оказалась более благодатной по своим возможностям. Но и она не смогла обеспечить постоянно возрастающие потребности человека. Только электроэнергия оказалась способной передаваться на большие расстояния в больших количествах и трансформироваться легко и быстро в любой другой вид энергии.

Здравомыслящие руководители государств и обществ с момента зарождения электроэнергетики (конца Х1Х — начала ХХ веков) поняли, что для обеспечения экономического роста электроэнергетика должна иметь опережающее развитие. Это позволило странам, вставшим на путь электрификации, совершить прорыв в экономической, научно-технической, социальной и культурной сферах. Однако со временем рост промышленно-энергетического производства вошел в противоречие с экологическими проблемами. Развитие социального и культурного самосознания способствовали возникновению ситуации, когда в обществе стало возникать некоторое противодействие промышленно-энергетическому развитию. Таким образом, возникла обратная связь, влияющая на экономику. Рост уровня потребления, ставший возможным благодаря развитию энергетики, шел на Западе практически параллельно с развитием понимания ценности человеческой жизни. В обществе формировалась идея: богатая жизнь в загрязненной природной среде абсурдна. Борьба за чистоту окружающей среды стала реальным фактором жизни многих стран. Появилось практическое следствие этого в сферах экономики, политики и международных отношений. Например, перенос энергоемких и грязных производств в другие экономически слабо развитые страны путем экспорта капитала.

В энергетике обсуждается вопрос – возможна ли в электроэнергетике рыночная конкуренция. Рыночная конкуренция возможна только между независимыми, работающими на одном направлении, системами. Система по определению это объективное единство закономерно связанных друг с другом предметов, явлений, а также знаний о природе и обществе. В науке и технике это множество элементов (узлов, агрегатов, приборов и т.д.), понятий, образующих некоторую целостность и подчиненных определенному руководящему принципу. Что можно рассматривать как систему в энергетике? Электроэнергия не может производиться на склад или аккумулироваться. Если где-то включили электродвигатель (аппарат, лампочку…), то на электростанции должно быть увеличено производство электроэнергии ровно на столько же. Поэтому в энергетике производитель закономерно связан с потребителем и, таким образом, системой здесь необходимо рассматривать единство «производитель – потребитель электроэнергии». Как можно организовать конкуренцию в такой системной связи? Это будет либо сговор, либо обман. Конкуренцию можно организовывать только между отдельными системами, обеспечивающими жизнедеятельность какой-то третьей системы. Например, энергомашиностроительные заводы могут конкурировать между собой при создании котлов, турбин и другого оборудования; станкостроительные заводы и др. В единой системе энергетика является основной образующей любого производства. Индивидуальный потребитель (человек) также становится зависимым от производителя энергии. Поэтому отдать энергетику в частные руки это, значит, потерять контроль над страной. Энергетика должна быть под государственным контролем, как это и делается во многих странах. В России со стороны государства в настоящее время контроль над энергетикой несколько ослаблен. Большинство электростанций уже давно выработали свой моторесурс. В связи с этим наша энергетика нуждается в новых идеях (новых планах ГОЭЛРО), в новых разработках, способствующих дальнейшему ее взлету, что даст надежду людям в освоении новых высоких творческих и промышленных успехов.

При проектировании дуговой сталеплавильной печи выбор мощности печного трансформатора производится на основании энергетического баланса печи в период расплавления и по результатом этого баланса определяется кроме необходимой мощности печного трансформатора и длительность расплавления и удельный расход электроэнергии в период расплавления, т.е. важнейшие параметры печи, определяющие ее производительность и технико-экономическую эффективность.

Определение полезной энергии для нагрева и расплавления металла и шлака.

К концу периода плавления за счет угара и физических потерь с удаленным из печи шлаком происходит потеря некоторой части загруженного в печь металла. По уточненным данным эти потери Кп составляют до 3 % массы лома.

1. Для получения заданного количества жидкого металла в печь необходимо загрузить увеличенное количество скрапа, исходя из соотношения:

где Gзагр - масса загружаемого в печь скрапа;

Gж - масса жидкого металла в конце периода плавления;

Kп - потери металла по отношению к массе загружаемого в печь скрапа,%;

2. Энергия, необходимая для нагрева и расплавления скрапа:

W1 = Gзагр · С1 · (tпл - t0) + 0,278· лж= 87,63 · 179 · (1600-50) + 750 · 0,278= 24313152 Вт · ч

где С1 - средняя удельная теплоемкость материала в интервале от начальной

температуры до температуры плавления, Вт · ч/(кг · 0С)

tпл - температура плавления, ос;

tпер - заданная температура перегрева, 0С;

лж - скрытая теплота плавления жидкого металла, кДж/кг;

3. Энергия, необходимая для перегрева расплавленного металла (Вт · ч):

W2 = Gж · С2 · tпер =87,63· 181 · 50 = 793051,5 Вт · ч

где С2 - средняя удельная теплоемкость жидкого материала в интервале от температуры плавления до заданной температуры перегрева, Вт · ч / (кг ·0С).

4. Энергия, необходимая для нагрева и расплавления шлакообразующих материалов, а также для перегрева расплавленного шлака, равна (Вт · ч):

W3 = Gш · (Сш · (tпер - tпл) + лш·0,278)= 5,26 · (34 · (1600-50) + 752·0,278) = 278301,66 Вт · ч.

где Gш - масса шлака (кг) принимается по отношению к массе загружаемого в печь скрапа и зависит от условий проводимой технологии.

Gш =87,63 · 0,06=5,26т.

5. Суммарная энергия периода расплавления:

Wпол = W1 + W2 + W3 = 24313152+793051,5+278301,66 =25384505,2 Вт · ч

Определение тепловых потерь через футеровку:

При работе ДСП огнеупорная кладка стен и свода с каждой плавкой изнашивается и утончается. Принимая, что к концу компании кладка может износиться на 50 % первоначальной ее толщины, вводить в расчет 0,75 толщины огнеупорной кладки. К футеровке подины эта рекомендация не относится.

1. Определим удельный тепловой поток нижнего участка стены при толщине равной:

0,75· 0,46=0,345м.

2. Коэффициент теплопроводности магнезитохромитового кирпича:

Температуру внутренней поверхности огнеупорной кладки принимаем равной єС, температуру окружающего воздуха єС. Температурой внешней поверхности кладки задаемся в первом приближении (для определения tср) єС.

3. При этих условиях определяем коэффициент теплопроводности:

где = 31,35 Вт/(м2К) - коэффициент теплоотдачи с поверхности кожуха.

  • 4. Толщина верхнего участка стены:
  • 5. Задаемся температурой кожуха єС и определяем коэффициент теплопроводности:
  • 6. Расчетная внешняя поверхность каждого участка стен равна:

7. Суммарные тепловые потери через стены печи:

Для определения удельных потерь принимаем температуру внутренней поверхности футеровки подины t1=1600єС и задаемся в первом приближении температурой внешней футеровки, а также температурой на границе огнеупорного и теплоизоляционного слоев футеровки

  • 8. Тепловые потери через футеровку падины:
  • 9. Суммарные тепловые потери:
  • 10. Тепловые потери через футеровку свода:

t1=tпл=1600"C; t2=20"C

11. Суммарные тепловые потери через футеровку:

Qф=Qст+Qсв+ Qпад=189082+227957,23+961652,7=1378691,93Вт=1378,69кВт

12. Тепловые потери излучением Qизл(кВт) через рабочее окно печи определяется по уравнению:

Qизл = qизл · ц · Fизл

где qизл - удельные тепловые потери излучением с поверхности, имеющей температуру tизл, в окружающую среду с температурой 200

qизл = 572 Вт/м2

ц - коэффициент дифрагмирования оконного проема

Fизл - тепловоспринимающая поверхность дверцы рабочего окна, м2.

Fизл= b· h=1.374 ·1.031=1.417м2

Qизл = 572 · 1,417 · 1 = 810,524Вт=0,811 кВт.

13. Тепловые потери межплавочного простоя Qпр можно определить следующим образом:

Qпр = (Qф + Qизл + 0,5 Qг) · Kн.п.=(1378,69+0,811+0,5·3298) ·1,1=3331,35кВт

где Qф- потери через футеровку в период расплавления, кВт;

Qизл- потери излучением через рабочее окно в период расплавления, кВт;

Qг - потери печи с газами в период расплавления, кВт=3298кВт

Кн.п. - коэффициент неучтенных потерь, принимаемый обычно в пределах 1,1 - 1,2

Каждый человек наделен своей энергетикой. Она бывает врожденная и полученная в течение жизни. Есть слабая энергетика, есть энергетика сильная. От нее, по мнению специалистов в области эзотерики, зависят личностное развитие и успех человека в жизни. Как же определить свое энергетическое поле?

Определенных способов проверки человека на его энергетическую мощь нет. Энергетику нельзя измерить приборами. Но ее можно почувствовать. Как правило, человек активный, целеустремленный и деятельный обладает большим запасом жизненных сил. А тот, кто постоянно жалуется на нехватку энергии, и есть человек с низким уровнем энергетики.

Энергетически сильный человек, как правило, всегда бывает в хорошем настроении. Он умеет управлять своими эмоциями, знает, на что способен и смело идет к цели. Его не пугают трудности, так как он чувствует в себе силу, которая поможет в сложный период.

Люди с сильной энергетикой более удачливы по жизни. Они бодры и позитивны. Их настрой и крепкое здоровье позволяет легко добиваться своих целей. Энергичные люди могут манипулировать окружающими, отстоять свою точку зрения и завоевать внимание к своей персоне.

Однако те, у кого высокий энергетический потенциал, должны уметь контролировать свою силу. Энергию лучше направлять во благо себе и окружающим. Если у вас сильная энергетика, то есть вероятность того, что вы можете сглазить человека и нанести вред его биополю.

Энергетически слабый человек часто болеет. Если у него и возникают хорошие идеи, то он не спешит их реализовывать. Люди со слабой энергетикой быстро устают. Их легко обидеть или оказать на них влияние.

Уровень энергетики более точно можно определить по сновидениям. Что чаще всего вам снится?

Если во сне вы часто в идите реки, леса, заросли - то это признак переизбытка энергии. Также об этом может свидетельствовать музыка во сне или ремень, который сильно стягивает вашу талию. В этом случае с энергетикой у все в порядке. Правда, случается, что чрезмерная энергичность не доводит до добра. Если ваши силы направлены во благо, от них будет реальная польза. Но если вы растрачиваете ее по пустякам, то ничего хорошего от своей внутренней силы вы не получите.

Если вам постоянно снятся руины, старые дома, пропасть, пустота, голод, жажда, ссоры, драки, узкие дороги и коридоры, то вы испытываете недостаток жизненной силы. Это знак того, что срочно нужно изменить свою жизнь и восстановить энергию .

Не спешите отчаиваться, если вдруг поняли, что энергетически вы не сильны. Есть мнение, что человеческая энергетика постоянно меняется . Она может быть врожденной, наследственной (ее уровень это зависит от многих факторов, таких как место рождение, энергетика рождения, обстоятельства рождения и прочее) и приобретенной.

Приобретенная энергетика может меняться в зависимости от того, какой образ жизни ведет человек, чем он занимается, где живет и с кем общается. Исходя из этого, можно легко повысить свой энергетический уровень. Для этого существует много способов.

  • Во-первых, необходимо полноценно питаться и наладить режим дня.
  • Во-вторых, необходимо почаще оставаться наедине с собой и своими мыслями, чтобы лучше понять себя и свои желания.
  • В-третьих, нужно отдавать предпочтение тому делу, которое приносить моральное удовлетворение.
  • В-четвертых, следует больше общаться с людьми, которые настраивают вас на позитивные эмоции.

Зная свой энергетический потенциал, вы можете самостоятельно его усилить (если он слабый), либо направить в нужное русло для достижения целей. Обладая внутренней силой, вы можете добиться всего, чего захотите. Главное, постоянно работать над энергетикой, не давать ей сбоя и уметь контролировать ее, когда это необходимо.

23.10.2013 16:31

День большинства людей начинает довольно рано – кто встает на учебу, кто на работу. Некоторым...

Энергия - это то, благодаря чему существует жизнь не только на нашей планете, но и во Вселенной. При этом она может быть очень разной. Так, тепло, звук, свет, электричество, микроволны, калории представляют собой различные виды энергии. Для всех процессов, происходящих вокруг нас, необходима эта субстанция. Большую часть энергии все сущее на Земле получает от Солнца, но имеются и другие ее источники. Солнце передает ее нашей планете столько, сколько бы выработали одновременно 100 млн самых мощных электростанций.

Что такое энергия?

В теории, выдвинутой Альбертом Эйнштейном, изучается взаимосвязь материи и энергии. Этот великий ученый смог доказать способность одной субстанции превращаться в другую. При этом выяснилось, что энергия является самым важным фактором существования тел, а материя вторична.

Энергия - это, по большому счету, способность выполнять какую-то работу. Именно она стоит за понятием силы, способной двигать тело или придавать ему новые свойства. Что же означает термин «энергия»? Физика - это фундаментальная наука, которой посвятили свою жизнь многие ученые разных эпох и стран. Еще Аристотель использовал слово «энергия» для обозначения деятельности человека. В переводе с греческого языка «энергия» - это «деятельность», «сила», «действие», «мощь». Первый раз это слово появилось в трактате ученого-грека под названием «Физика».

В общепринятом сейчас смысле данный термин был введен в обиход английским ученым-физиком Это знаменательное событие произошло в далеком 1807 году. В 50-х годах XIX в. английский механик Уильям Томсон впервые использовал понятие «кинетическая энгергия», а в 1853 г. шотландский физик Уильям Ренкин ввел термин «потенциальная энергия».

Сегодня эта скалярная величина присутствует во всех разделах физики. Она является единой мерой различных форм движения и взаимодействия материи. Другими словами, она представляет собой меру преобразования одних форм в другие.

Единицы измерения и обозначения

Количество энергии измеряется Эта специальная единица в зависимости от вида энергии может иметь разные обозначения, например:

Виды энергии

В природе существует множество самых разных видов энергии. Основными из них считаются:

  • механическая;
  • электромагнитная;
  • электрическая;
  • химическая;
  • тепловая;
  • ядерная (атомная).

Есть и другие виды энергии: световая, звука, магнитная. В последние годы все большее число ученых-физиков склоняются к гипотезе о существовании так называемой «темной» энергии. Каждый из перечисленных ранее видов данной субстанции имеет свои особенности. Например, энергия звука способна передаваться при помощи волн. Они способствуют возникновению вибрации барабанных перепонок в ухе людей и животных, благодаря которой можно слышать звуки. В ходе различных химических реакций высвобождается энергия, необходимая для жизнедеятельности всех организмов. Любое топливо, продукты питания, аккумуляторы, батарейки являются хранилищем этой энергии.

Наше светило дает Земле энергию в виде электромагнитных волн. Только так она может преодолеть просторы Космоса. Благодаря современным технологиям, таким как солнечные батареи, мы можем использовать ее с наибольшим эффектом. Излишки неиспользованной энергии аккумулируются в особых энергохранилищах. Наряду с вышеперечисленными видами энергии часто используются термальные источники, реки, океана, биотопливо.

Механическая энергия

Этот вид энергии изучается в разделе физики, называемом «Механикой». Она обозначается буквой Е. Ее измерение осуществляется в джоулях (Дж). Что собой представляет эта энергия? Физика механики изучает движение тел и взаимодействие их друг с другом либо с внешними полями. При этом энергия, обусловленная движением тел, называется кинетической (обозначается Ек), а энергию, обусловленную или внешних полей, именуют потенциальной (Еп). Сумма движения и взаимодействия представляет собой полную механическую энергию системы.

Для расчета обоих видов существует общее правило. Для определения величины энергии следует вычислить работу, необходимую для перевода тела из нулевого состояния в данное состояние. При этом чем больше работа, тем большей энергией будет обладать тело в данном состоянии.

Разделение видов по разным признакам

Существует несколько видов разделения энергии. По разным признакам ее делят на: внешнюю (кинетическую и потенциальную) и внутреннюю (механическую, термическую, электромагнитную, ядерную, гравитационную). Электромагнитная энергия в свою очередь подразделяется на магнитную и электрическую, а ядерная - на энергию слабого и сильного взаимодействия.

Кинетическая

Любые движущиеся тела отличаются наличием кинетической энергии. Она часто так и называется - движущей. Энергия тела, которое движется, теряется при его замедлении. Таким образом, чем быстрее скорость, тем больше кинетическая энергия.

При соприкосновении движущегося тела с неподвижным объектом последнему передается часть кинетической, приводящая и его в движение. Формула энергии кинетической следующая:

  • Е к = mv 2: 2,
    где m — масса тела, v - скорость движения тела.

В словах эту формулу можно выразить следующим образом: кинетическая энергия объекта равна половине произведения его массы на квадрат его скорости.

Потенциальная

Этим видом энергии обладают тела, которые находятся в каком-либо силовом поле. Так, магнитная возникает, когда объект находится под действием магнитного поля. Все тела, находящиеся на земле, обладают потенциальной гравитационной энергией.

В зависимости от свойств объектов изучения они могут иметь различные виды потенциальной энергии. Так, упругие и эластичные тела, которые способны вытягиваться, имеют потенциальную энергию упругости либо натяжения. Любое падающее тело, которое было ранее неподвижно, теряет потенциальную и приобретает кинетическую. При этом величина этих двух видов будет равнозначна. В поле тяготения нашей планеты формула энергии потенциальной будет иметь следующий вид:

  • Е п = mhg,
    где m — масса тела; h - высота центра массы тела над нулевым уровнем; g - ускорение свободного падения.

В словах эту формулу можно выразить так: потенциальная энергия объекта, взаимодействующего с Землей, равна произведению его массы, ускорению свободного падения и высоты, на которой оно находится.

Эта скалярная величина является характеристикой запаса энергии материальной точки (тела), находящейся в потенциальном силовом поле и идущей на приобретение кинетической энергии за счет работы сил поля. Иногда ее называют функцией координат, являющейся слагаемым в лангранжиане системы (функция Лагранжа динамической системы). Эта система описывает их взаимодействие.

Потенциальную энергию приравнивают к нулю для некой конфигурации тел, расположенных в пространстве. Выбор конфигурации определяется удобством дальнейших вычислений и называется «нормировкой потенциальной энергии».

Закон сохранения энергии

Одним из самых основных постулатов физики является Закон сохранения энергии. В соответствии с ним, энергия ниоткуда не возникает и никуда не исчезает. Она постоянно переходит из одной формы в другую. Иными словами, происходит только изменение энергии. Так, например, химическая энергия аккумулятора фонарика преобразуется в электрическую, а из нее - в световую и тепловую. Различные бытовые приборы превращают электрическую в свет, тепло или звук. Чаще всего конечным результатом изменения являются тепло и свет. После этого энергия уходит в окружающее пространство.

Закон энергии способен объяснить многие Ученые утверждают, что общий объем ее во Вселенной постоянно остается неизменным. Никто не может создать энергию заново или уничтожить. Вырабатывая один из ее видов, люди используют энергию топлива, падающей воды, атома. При этом один ее вид превращается в другой.

В 1918 г. ученые смогли доказать, что закон сохранения энергии представляет собой математическое следствие трансляционной симметрии времени - величины сопряженной энергии. Другими словами, энергия сохраняется вследствие того, что законы физики не отличаются в различные моменты времени.

Особенности энергии

Энергия - это способность тела совершать работу. В замкнутых физических системах она сохраняется на протяжении всего времени (пока система будет замкнутой) и представляет собой один из трех аддитивных интегралов движения, сохраняющих величину при движении. К ним относятся: энергия, момент Введение понятия «энергия» целесообразно тогда, когда физическая система однородна во времени.

Внутрення энергия тел

Она представляет собой сумму энергий молекулярных взаимодействий и тепловых движений молекул, составляющих его. Ее нельзя измерить напрямую, поскольку она является однозначной функцией состояния системы. Всегда, когда система оказывается в данном состоянии, ее внутренняя энергия имеет присущее ему значение, независимо от истории существования системы. Изменение внутренней энергии в процессе перехода из одного физического состояния в другое всегда равно разности между ее значениями в конечном и начальном состояниях.

Внутренняя энергия газа

Помимо твердых тел, энергию имеют и газы. Она представляет собой кинетическую энергию теплового (хаотического) движения частиц системы, к которым относятся атомы, молекулы, электроны, ядра. Внутренней энергией идеального газа (математической модели газа) является сумма кинетических энергий его частиц. При этом учитывается число степеней свободы, представляющее собой число независимых переменных, определяющих положение молекулы в пространстве.

С каждым годом человечество потребляет все большее количество энергоресурсов. Чаще всего для получения энергии, необходимой для освещения и отопления наших жилищ, работы автотранспорта и различных механизмов, используются такие ископаемые углеводороды, как уголь, нефть и газ. Они относятся к невозобновимым ресурсам.

К сожалению, только незначительная часть энергии добывается на нашей планете с помощью возобновимых ресурсов, таких как вода, ветер и Солнце. На сегодняшний день их удельный вес в энергетике составляет всего 5 %. Еще 3 % люди получают в виде ядерной энергии, производимой на атомных электростанциях.

Имеют следующие запасы (в джоулях):

  • ядерная энергия - 2 х 10 24 ;
  • энергия газа и нефти - 2 х 10 23 ;
  • внутренне тепло планеты - 5 х 10 20 .

Годовая величина возобновляемых ресурсов Земли:

  • энергия Солнца - 2 х 10 24 ;
  • ветер - 6 х 10 21 ;
  • реки - 6,5 х 10 19 ;
  • морские приливы - 2,5 х 10 23 .

Только при своевременном переходе от использования невозобновляемых запасов энергии Земли к возобновляемым человечество имеет шанс на долгое и счастливое существование на нашей планете. Для воплощения передовых разработок ученые всего мира продолжают тщательно изучать разнообразные свойства энергии.

к.т.н. А.В. Мартынов, доцент кафедры ПТС МЭИ (ТУ).

Любая установка предназначена для производства какого – либо продукта в широком смысле слова (от потребительского до энергетического). Этот продукт является полученным эффектом (ПЭ), ради которого создаётся данная установка. Продукт – это цель, достижение которой требует затраты энергии. Эффективность достижения этой цели определяется коэффициентом этой цели (К ц). Так для КЭС – таким продуктом является электроэнергия, для ТЭЦ кроме электроэнергии – является и тепло.

Для любых нагревательных установок: котельных, печей, электроподогревателей полезным эффектом (ПЭ) – является тепло. Для холодильных установок ПЭ – является холод, для кислородных установок – кислород, для азотных – азот и т.д.

Для определения энергетической эффективности любой установки кроме полученного ПЭ необходимо учесть затраты энергии (ЗЭ), которая подводится к установке, для обеспечения её работы.

Для определения эффективности любой установки часто используются целевые коэффициенты (К ц), учитывающие ПЭ и ЗЭ:

Для разных установок этот коэффициент К ц имеет разные названия (табл. 1):

1. Так для холодильных установок, производящих холод: это - холодильный коэффициент:

а) Для парокомпрессорных установок: ,

б) Для абсорбционных установок: ;

2. Для тепловых насосов: коэффициент преобразования или трансформации: ;

3. Для электростанций, производящих электроэнергию – коэффициент работоспособности: ;

4. Для любых теплопроизводящих установок - тепловой коэффициент: (Для сжигающих топливо ).

Однако, с целевыми коэффициентами начинаются проблемы, связанные с тем что они имеют разные значения и могут изменяться в пределах:

0 ≤ К ц ≤ ∞

Т.е целевой коэффициент может быть больше 1.

Посмотрим, что будет с целевым коэффициентом для электростанции (К р), работающей по циклу Карно (рис. 1):

Рис. 1 Идеальный цикл Карно.

Отсюда видно, что .

Таким образом коэффициент работоспособности показывает какое количество работы (L) можно получить от данного количества тепла (Q) с температурой Т при переводе его на уровень окружающей среды Т ос. Коэффициент работоспособности имеет различное обозначение: ω; τ .

Примем любое значение для Т. Например Т = 220 ºС. Тогда:

Другие целевые коэффициенты

Например, холодильный коэффициент (ε) может достигать значений более 100 % (может составлять: 150; 200; 250; и т.д. %).

Для тепловых насосов коэффициент трансформации тепла (μ) может достигать и 300; 400; 500 и более %.

Отсюда ясно, что все выше упомянутые целевые коэффициенты, хотя и отражают в какой-то степени энергетическую эффективность, но не являются КПД, т.к. могут принимать значения более 100%.

Следовательно, все целевые коэффициенты не отражают реальную эффективность энергетических установок и систем и не являются коэффициентами полезного действия (КПД). Это происходит потому, что в них входят различные виды энергии, такие, например, как работа (L), электроэнергия (N), тепло (Q) и т.д.

Но очевидно, что все виды энергии имеют различную природу и относятся к разным группам, таким как:

I. Упорядоченный вид энергии (L и N)

II. Неупорядоченный вид энергии (Q и J).

Поэтому нельзя с энергией различных групп, производить различные действия (арифметические, алгебраические и т.д.). (Например: Нельзя как это часто делается делить тепло на работу или наоборот: или ).

Отсюда все вышеприведённые целевые коэффициенты и дают, как уже указывалось, значение больше 100%.

Только КПД (коэффициент полезного действия) объективно и правильно отражает эффективность той или иной установки, аппарата, системы. Значения КПД находится всегда в пределах (0 ≤ η ≤ 1), т.е. не превышает значения 100 %.

Для идеальной установки - η = 1 (т.е. её эффективность равна 100%). Для реальных установок η < 1 (т.е. меньше 100 %). И, естественно, чем ближе η реальных установок к 1, тем больше их эффективность. Малоэффективные установки имеют низкие значения КПД.

КПД дает правильную оценку энергетической эффективности, т.к. бузируется на использовании всех видов энергии, приведённых к одному виду, учитывающему работоспособность энергии (эксергии):

где: Э – количнство любой энергии;

τ – коэффициент работоспособности, показывает какое количество работы (L) может произвести данное количество энергии (Э):

Для энергий I группы (упорядоченной энергии) коэффициент работоспособности τ = 1.

Аналогично и для электроэнергии (N): τ N = 1.

Для энергий II группы (неупорядоченной энергии), τ ≠ 1. Так для тепла (Q) коэффициент работоспособности зависит от температурного уровня (Т) данного количества тепла: (Рис. 2).

Рис. 2. Пределы измерения τ q от Т

I. Котла

Тепловой коэффициент

II. Эл. станции (цикл Карно)

Коэффициент работы

(работоспособности)

III. Холодильной установки

Холодильный коэффициент

IV. Теплового насоса

Коэффициент трансформации

V. Теплообменника

Коэффициент теплообменника

Эксергия (работоспособность) тепла:

.

При Т = Т ос; τ q = 0. Это говорит о том, что любое количество тепла (Q) при Т ос не обладает работоспособностью (Е), т.е. не может произвести работу, (Е q = 0).

Для любых теплоэнергетических установок (аппаратов), где производится или потребляется тепло (Q) при Т > Тос коэффициент работоспособности тепла (τ q) находится в пределах от 0 до 1 т.е. для реальных установок 0 < τ q < 1. Поэтому, работоспособность (эксергия) любого количества тепла (Е = Q∙ τ q) всегда меньше данного количества тепла: E < Q.

Эксергия (работоспособность) различных видов энергии:

1) Эксергия работы: E L = L∙τ L = L∙1 = L

(эксергия работы = количеству работы)

2) Эксергия электроэнергии: E N = N∙τ N = N∙1 = N

(эксергия мощности = мощности)

3) Эксергия тепла:

(эксергия тепла зависит от его темпераьуры и прямо пропорциональна коэффициенту работоспособности τ q (рис 2).

Поэтому КПД отражающий действие (Д), которое является аналогом работы (L), должен включить и в числитель и в знаменатель величины связанные с работоспособностью энергии, т.е. эксергию:

Следовательно, только эксергетический КПД объективно отражает энергетическую эффективность любого аппарата, установки или системы. Его значения всегда находятся в пределах 0 ≤ η ≤ 1.

Отсюда КПД цикла Карно, т.е. идеального цикла будет равен1 (η = 1):

.

Очевидно, что η и для других установок будут находится в пределах 0 ≤ η ≤ 1, что является критерием правильной оценки энергетической эффективности любой установки и системы:

Для теплотехнической установки (котла) (табл.1);

где ; ;

Т – температура полученного тепла;

Т Т – температура горения топлива.

Для холодильной установки:

; где

Для теплового насоса:

; где

Для солнечного нагревателя:

; где

Для теплоэлектрической станции (ТЭС):

,

где N э – мощность электростанции;

Q – теплопроизводительность;

Q Т – тепло, подведённое к ТЭС (топливо, гео и т.д.);

Мощность циркуляционных насосов.

Используя эксергетический метод, можно изменить ценовую политику по определению стоимости отпускаемого тепла от ТЭЦ. Сейчас ТЭЦ отпускает тепло не учитывая его качество, которое зависит от температуры отпускаемого тепла. Например, если цена за Гкал составляет Ц = 600 руб/Гкал, то при изменении температуры, в соответствии с температурным графиком 150 – 70 и его уменьшении при повышении t наружного воздуха температура отпускаемого тепла от ТЭЦ понижается, т.е. тепло подается уже не при 150 ºС, а при более низких t, т.е. 140; 130; 110; 100 и т.д.

Следовательно, эксергия этого тепла уменьшается в соответствии с уменьшением коэффициента работоспособности τ q (табл. 2).

Поэтому цена за Гкал отпущенного тепла не должна оставаться постоянной, а должна уменьшаться с понижением температуры, отпускаемого тепла в соответствии с изменениями τ q (рис.3).

Рис. 3 Изменение стоимости тепла в зависимости от температурного уровня, отпускаемого тепла.

Выводы

1) Для определения энергетической эффективности используется:

а) целевые коэффициенты, которые могут приобретать значение больше 1;

б) коэффициенты полезного действия КПД, которые не могут быть больше 1;

2) КПД определяются на основе эксергетического метода, учитывающего потери;

3) На основе эксергетического метода анализа необходимо определить ценовую политику на отпускаемое тепло, эл. энергию и другие виды энергии.

Литература

1. Соколов Е.Я., Бродянский В.М., «Энергетические основы трансформации тепла и процессов охлаждения», М., Энергоиздат, 1981 г.

2. Бродянский В.М., «Эксергетический метод термодинамического анализа», М., Энергия, 1973 г.