Энергия системы зарядов заряженного проводника и конденсатора. Энергия электрического поля. Электрическая энергия системы зарядов. Энергия уединенного проводника. Энергия конденсатора. Плотность энергии. Энергия заряженного конденсатора. Объемная плотност

11. Энергия заряженного проводника и конденсатора. Плотность энергии электростатического поля.

1. Энергия заряженного проводника и конденсатора.

Если уединенный проводник имеет заряд q, то вокруг него существует электрическое поле, потенциал которого на поверхности проводника равен , а емкость - С. Увеличим заряд на величину dq. При переносе заряда dq из бесконечности должна быть совершена работа равная . Но потенциал электростатического поля данного проводника в бесконечности равен нулю . Тогда

При переносе заряда dq с проводника в бесконечность такую же работу совершают силы электростатического поля. Следовательно, при увеличении заряда проводника на величину dq возрастает потенциальная энергия поля, т.е.

Проинтегрировав данное выражение, найдем потенциальную энергию электростатического поля заряженного проводника при увеличении его заряда от нуля до q:

Применяя соотношение , можно получить следующие выражения для потенциальной энергии W:

Для заряженного конденсатора разность потенциалов (напряжение) равна поэтому соотношение для полной энергии его электростатического поля имеют вид:

2. Плотность энергии электростатического поля.

Это физическая величина, численно равная отношению потенциальной энергии поля, заключенной в элементе объема, к этому объему. Для однородного поля объемная плотность энергии равна . Для плоского конденсатора, объем которого Sd, где S - площадь пластин, d - расстояние между пластинами, имеем:

С учетом, что и :

Или .

12. Носители тока в средах. Сила и плотность тока. Уравнение непрерывности. Электрическое поле в проводнике с током. Силовые линии электрического поля и линии тока.

Электрический ток - упорядоченное некомпенсированное движение свободных электрически заряженных частиц, например, под воздействием электрического поля. Такими частицами могут являться: в проводниках - электроны , в электролитах - ионы (катионы и анионы ), в газах - ионы и электроны , в вакууме при определенных условиях -электроны , в полупроводниках - электроны и дырки (электронно-дырочная проводимость).

Сила тока - скалярная физическая величина, определяемая отношением заряда Δq, проходящего через поперечное сечение проводника за некоторый промежуток времени Δt, к этому промежутку времени.

Единицей силы тока в СИ является ампер (А).

Если сила тока и его направление со временем не изменяются, то ток называется постоянным.

Единица силы тока - основная единица в СИ 1 А - есть сила такого неизменяющегося тока, который, проходя по двум бесконечно длинным параллельным прямолинейным проводникам очень маленького сечения, расположенным на расстоянии 1 м друг от друга в вакууме, вызывает силу взаимодействия между ними 2·10-7 Η на каждый метр длины проводников.

Рассмотрим, как зависит сила тока от скорости упорядоченного движения свободных зарядов.

Выделим участок проводника площадью сечения S и длиной Δl (рис. 1). Заряд каждой частицы q0. В объеме проводника, ограниченном сечениями 1 и 2, содержится nSΔl частиц, где n - концентрация частиц. Их общий заряд


Рис. 1

Если средняя скорость упорядоченного движения свободных зарядов , то за промежуток времени все частицы, заключенные в рассматриваемом объеме, пройдут через сечение 2. Поэтому сила тока:

Таким образом, сила тока в проводнике зависит от заряда, переносимого одной частицей, их концентрации, средней скорости направленного движения частиц и площади поперечного сечения проводника.

Заметим, что в металлах модуль вектора средней скорости упорядоченного движения электронов при максимально допустимых значениях силы тока ~ 10-4 м/с, в то время как средняя скорость их теплового движения ~ 106 м/с.

Плотность тока j - это векторная физическая величина, модуль которой определяется отношением силы тока I в проводнике к площади S поперечного сечения проводника, т.е.

В СИ единицей плотности тока является ампер на квадратный метр (А/м2).

Как следует из формулы (1), . Направление вектора плотности тока совпадает с направлением вектора скорости упорядоченного движения положительно заряженных частиц. Плотность постоянного тока постоянна по всему поперечному сечению проводника.

Уравнение непрерывности.

Представим себе, в некоторой проводящей среде, где течет ток, замкнутую поверхность S . Для замкнутых поверхностей векторы нормалей, а следовательно, и векторы принято брать наружу, поэтому интеграл дает заряд, выходящий в единицу времени наружу из объема V , охваченного поверхностью S . Мы знаем, что плотность постоянного электрического тока одинакова по всему поперечному сечению S однородного проводника. Поэтому для постоянного тока в однородном проводнике с поперечным сечением S сила тока:

Пусть S – замкнутая поверхность, а векторы всюду проведены по внешним нормалям . Тогда поток вектора сквозь эту поверхность S равен электрическому току I , идущему вовне из области, ограниченный замкнутой поверхностью S . Следовательно, согласно закону сохранения электрического заряда, суммарный электрический заряд q , охватываемый поверхностью S , изменяется за время на , тогда в интегральной форме можно записать.

Энергия заряженного проводника численно равна работе, которую должны со­вершить внешние силы для его зарядки W=A. При перенесении заряда dq из бесконечности на проводник совершается ра­бота dA против сил электростатического поля (по преодолению кулоновских сил отталки­вания между одноименными зарядами) : dA=jdq=Cjdj.

Чтобы зарядить тело от нулевого потенциала до потенциала j, потребуется ра­бота . Энергия заряженного проводника равна той работе, которую надо совершить, чтобы зарядить его: .

Выражение принято называть собственной энергией заряженного про­водника .

Увеличение потенциала j проводника при его зарядке сопровождается усиле­нием электростатического поля, возрастает напряженность поля . Естественно предположить, что собственная энергия заряженного проводника есть энергия его электростатического поля. Проверим это предположение на примере однородного поля плоского конденсатора. Повторяя ход вышеприведенного расчета, нетрудно получить энергию заряженного плоского конденсатора ,

где Dj - разность потенциалов его обкладок. Подставим в эту формулу выражения для емкости плоского конденсатора и разности потенциалов между обкладками . Тогда для энергии получим , где V=Sd - объем электростатического поля между обкладками конденсатора.

Отсюда следует, что собственная энергия заряженного плоского конденсатора пропорциональна V объему его поля и на­пря­женности . Следовательно, необходимо считать, что электростатическое поле обладает энергией. Объемная плотность энергии электрического поля или энергия единицы объема равна , . Где же локализована энергия электростатического поля и что является ее но­си­телем - заряды или само поле? Ответ на этот вопрос может дать только опыт. Од­нако электростатика не может ответить на данный вопрос, потому что она изучает посто­янные во времени поля неподвижных зарядов, т.е. в электростатике поля и за­ряды неотделимы друг от друга.

Опыты показали, что переменные во времени электрические поля могут суще­ствовать обособленно, независимо от возбудивших их зарядов. Они распространя­ют­ся в пространстве в виде волн, способных переносить энергию. Отсюда следует, что энергия локализована в поле и носителем электрической энергии является поле.


.

где потенциал, создаваемый в точке, где находится i- тый заряд системы всеми остальными зарядами. Однако поверхность проводника является эквипотенциальной, т.е. потенциалы одинаковы, и соотношение (16.13) упрощается:

.

Энергия заряженного конденсатора

Заряд положительно заряженной обкладки конденсатора находится в практически однородном поле отрицательно заряженной пластины в точках с потенциалом . Аналогичным образом отрицательный заряд находится в точках с потенциалом . Поэтому энергия конденсатора

.
(16.17)
.

Формула (16.17) связывает энергию конденсатора с наличием на его обкладках заряда, а (16.18) – с существованием в промежутке между обкладками электрического поля. В связи с этим возникает вопрос о локализации энергии электрического поля: на зарядах или в пространстве между обкладками. В рамках электростатики ответить на этот вопрос невозможно, однако электродинамика утверждает, что электрическое и магнитное поля могут существовать независимо от зарядов. Поэтому энергия конденсатора сосредоточена в пространстве между обкладками конденсатора и связана с электрическим полем конденсатора.

Поскольку поле плоского конденсатора является однородным, можно считать, что энергия распределена между обкладками конденсатора с некоторой постоянной плотностью . В соответствии с соотношением (16.18)

.

Учтем, что , т.е. электрической индукции. Тогда выражению для плотности энергии можно придать вид:



,

где - поляризованность диэлектрика между обкладками конденсатора. Тогда выражение для плотности энергии приобретает вид:

(16.22)
.

Первое слагаемое в правой части (16.23) представляет собой энергию, которой обладал бы конденсатор, если в пространстве между обкладками был бы вакуум. Второе слагаемое связано с энергией, затрачиваемой при зарядке конденсатора на поляризацию диэлектрика, заключенного в пространстве между обкладками.


ПОСТОЯННЫЙ ЭЛЕКТРИЧЕСКИЙ ТОК

Электрический ток.

ЭТ будем называть упорядоченное (направленное) движение заряженных частиц, при котором через некоторую воображаемую поверхность переносится отличный от нуля электрический заряд . Обратите внимание, определяющим признаком существования электрического тока проводимоти является именно перенос заряда, а не направленное движение заряженных частиц. Любое тело состоит из заряженных частиц, которые вместе с телом могут двигаться направленно. Однако без переноса заряда электрический ток, очевидно, не возникает.

Частицы, осуществляющие перенос за­ряда, называются носителями тока . Количественно электрический ток характе­ризуют силой тока , равной заряду, переносимому через рассматриваемую поверх­ность в единицу времени:

,

направленный в сторону вектора скорости положительных носителей тока. В формуле (1) - сила тока через площадку , расположенную перпендикулярно направлению движения носителей тока.

Пусть в единице объема содержится п + положительных носителей с заря­дом е + и п – отрицательных с зарядом е – . Под действием электрического поля носители приобретают средние скорости направленного движения соответст­венно и . За единицу времени через единичную площадку пройдут носителей, которые перенесут положительный заряд . Отрицательные перенесут соответственно заряд . Следовательно

(17.3)

Уравнение непрерывности

Рассмотрим среду, в которой течет электрический ток. В каждой точке, среды вектор плотности тока имеет определенное значение. Следовательно, можно говорить о поле вектора плотности тока и линиях этого вектора.

Рассмотрим поток через некоторую произвольную замкнутую поверхность S . По определению , его поток дает заряд, выходящий в единицу времени из объема V , ограниченного S . С учетом закона сохранения заряда можно утверждать, что поток должен быть равен скорости убывания заряда в V :

(17.8)
(17.9)

Равенство (17.7) должно выполняться при произвольном выборе объёма V , по которому производится интегрирование. Поэтому в каждой точке среды

Соотношение (17.8) называется уравнением непрерывности . Оно отражает закон со­хранения электрического заряда и утверждает, что в точках, которые являют­ся источниками вектора ,происходит убывание электрического заряда.

В случае стационарного, т.е. установившегося (неизменяющегося) тока, потенциал, плотность заряда и др. величины являются неизменными и

Это соотношение означает, что в случае постоянного тока вектор не имеет источников, а значит линии нигде ни начинаются и нигде не заканчиваются, т.е. линии постоянного тока всегда замкнуты .

Электродвижущая сила

После снятия электрического поля, создававшего в проводнике электри­ческий ток, направленное движение электрических зарядов быстро прекращается. Для поддержания тока необходимо от конца проводника с меньшим потенциалом переводить заряды к концу с большим потенциалом. Поскольку циркуляция вектора напряженности электрического поля равна нулю, то в замкнутой цепи кроме участков, на которых положительные носители движутся в сторону убывания потенциала, должны быть участки, на которых происходит перенос положительных зарядов в направлении возрастания потенциала. На этих участках перемещение зарядов может осуществляться только с помощью сил неэлектростатического происхождения, которые называют сторонними силами .

Электроемкость уединенного проводника

Уединенный проводник - проводник, который удален от других проводников, тел и зарядов.

Электроемкость уединенного проводника (заряд, сообщение которого проводнику изменяет его потенциал на единицу (измеряется в фарадах) Q - заряд, фи - потенциал проводника.)

Электроемкость шара.

Конденсаторы

Конденсаторы - устройства, обладающие способностью при малых размерах и небольших относительно окружающих тел потенциалах обладать большой емкостью. Конденсатор состоит на двух проводников (обкладок), разделенных диэлектриком. Конденсаторы делят на плоские (две плоские параллельные пластины одинаковой площади, расположенные на расстоянии d друг от друга), цилиндрические (два проводящих коаксиальных цилиндра) и сферические (два проводника, имеющие форму концентрических сфер).

Емкость конденсатора - физическая величина, равная отношению заряда Q, накопленного в конденсаторе, к разности потенциалов между его обкладками. - для плоского; - для сферического; - для цилиндрического.

Конденсаторы характеризуются пробивным напряжением - разностью потенциалов между обкладками конденсатора, при которой происходит пробой - электрический разряд через слой диэлектрика в конденсаторе.

Соединения конденсаторов: последовательное, параллельное и смешанное.

Энергия системы зарядов, уединенного проводника и конденсатора. Энергия электростатического поля

1. Энергия системы неподвижных точечных зарядов

2. Энергия заряженного уединенного проводника () - равна той работе, которую необходимо совершить, чтобы зарядить этот проводник

3. Энергия заряженного конденсатора ()

4. Энергия электростатического поля () V=Sd - объем конденсатора

Объемная плотность энергии электростатического поля

Электрический ток, сила и плотность тока рисунок конденсатора выше

Электрический ток - любое упорядоченное движение электрических зарядов. В проводнике возникает электрический ток, называемый током проводимости. Для возникновения и существования электрического тока необходимо наличие свободных носителей тока - заряженных частиц,

способных перемещаться упорядоченно, и наличие электрического поля, энергия которого расходовалась бы на их упорядоченное движение.

Сила тока I - скалярная физическая величина, определяемая электрическим зарядом, проходящим через поперечное сечение проводника в единицу времени, измеряется в амперах. Если сила тока и его направление не изменяются со временем, то такой ток называется постоянным.

1. Энергия системы неподвижных точечных заря-до в. Электростатические силы взаимодействия консервативны, следователь­но, система зарядов обладает потенциальной энергией. Найдем потенциальную энергию системы двух неподвижных точечных зарядов Q 1 и Q 2 , находящихся на расстоянии г друг от друга. Каждый из этих зарядов в поле другого обладает потенциальной энергией:

где и - соответственно потенциалы, создаваемые зарядом Q 2 в точке на­хождения заряда Q 1 и зарядом Q 1 в точке нахождения заряда Q 2

и

Поэтому W 1 =W 2 =W и W=Q 1 =Q 2 =1/2(Q 1 + Q 2 ). Добавляя к системе из двух зарядов последовательно заряды Q 3 , Q 4 ..., можно убедиться в
том, что в случае n неподвижных зарядов энергия взаимодействия системы то­чечных зарядив равна

Потенциал, создаваемый в той точке, где находится заряд Q i , всеми зарядами, кроме i-го.

2 Энергия заряженного уединенного проводника. Пусть имеется уединенный проводник, заряд, емкость и потенциал которого соответственно равны Q, С, . Увеличим заряд этого проводника на dQ. Для этого необходимо перенести заряд dQ из бесконечности на уединенный про­водник, затратив на это работу равную

Чтобы зарядить тело от нулевого потенциала до , необходимо совершить работу

, (1.17.2)

Энергия заряженного проводника равна той работе, которую необходимо совершить, чтобы зарядить этот проводник.

(1.17.3)

Формулу (1.17.2) можно получить и из того, что потенциал проводника во всех его точках одинаков, гак как поверхность проводника является эквипотен­циальной. Полагая потенциал проводника равным , из (1.17.1) найдем

где Q = , - заряд проводника.

3. Энергия заряженного конденсатора. Как всякий заряженный проводник, конденсатор обладает энергией, которая в соответствии с формулой (1.17.3) равна

, (1.17.4)

где Q - заряд конденсатора, С - его емкость, ()- разность потенциалов моыц обкладками.

4. Энергия электростатического поля. Преобразуем формулу (1.17.4), выражающую энергию плоского конденсатора посредством зарядов и потенциалов, воспользовавшись выражением для емкости плоского конденсатора () и разности потенциалов между его обкладками . Тогда получим

(1.17.5)

где V = Sd - объем конденсатора. Формула (1.17.5) показывает, что энергия конденсатора выражается через величину, характеризующую электростатическое поле, - напряженность Е.

Объемная плотность энергии электростатического поля (энергия единицы объема)

(1.17.6)

Выражение (1.46) справедливо только для изотропного д и э л с к i р и к а, для которого выполняется соотношение:

Формулы (1.17.4) и (1.17.5) соответственно связывают энергию конденсату,> с зарядом на его обкладках и напряженностью поля. Возникает, естественно, вопрос о локализации электростатической энергии и что является ее носителем- заряды или поле? Ответ на этот вопрос может дать только опыт. Электроста­тика изучает постоянные во времени поля неподвижных зарядов, т.е. в ней поля и обусловившие их заряды неотделимы друг от друга. Поэтому электростатика ответить на поставленные вопросы не может. Дальнейшее развитие теории и эксперимента показало, что переменные во времени электрические и магнитные поля могут существовать обособленно, независимо от возбудивших их за­
рядов, и распространяются в пространстве в виде электромагнитных волн, спо­собных переносить энергию. Это убедительно подтверждает основное положе­ние теории близкодействия о локализации энергии в поле и то, что поле является ее носителем.