Сколько солнечной энергии попадает на Землю? Солнечные трубчатые вакуумированные коллекторы. Активные солнечные системы

Энергия Солнца является источником жизни на нашей планете. Солнце нагревает атмосферу и поверхность Земли. Благодаря солнечной энергии дуют ветры, осуществляется круговорот воды в природе, нагреваются моря и океаны, развиваются растения, животные имеют корм. Именно благодаря солнечному излучению на земле существуют ископаемые виды топлива. Солнечная энергия может быть преобразована в теплоту или холод, движущую силу и электричество.

СОЛНЕЧНАЯ РАДИАЦИЯ

Солнечная радиация - это электромагнитное излучение, сосредоточенное в основном в диапазоне волн длиной 0,28…3,0 мкм. Солнечный спектр состоит из:

Ультрафиолетовых волн длиной 0,28…0,38 мкм, невидимых для наших глаз и составляющих приблизительно 2 % солнечного спектра;

Световых волн в диапазоне 0,38 … 0,78 мкм, составляющих приблизительно 49 % спектра;

Инфракрасных волн длиной 0,78…3,0 мкм, на долю которых приходится большая часть оставшихся 49 % солнечного спектра.

Остальные части спектра играют незначительную роль в тепловом балансе Земли.

СКОЛЬКО СОЛНЕЧНОЙ ЭНЕРГИИ ПОПАДАЕТ НА ЗЕМЛЮ?

Солнце излучает огромное количество энергии - приблизительно 1,1x10 20 кВт ч в секунду. Киловатт час - это количество энергии, необходимое для работы лампочки накаливания мощностью 100 ватт в течение 10 часов. Внешние слои атмосферы Земли перехватывают приблизительно одну миллионную часть энергии, излучаемой Солнцем, или приблизительно 1500 квадрильонов (1,5 x 10 18) кВт ч ежегодно. Однако из-за отражения, рассеивания и поглощения ее атмосферными газами и аэрозолями только 47% всей энергии, или приблизительно 700 квадрильонов (7 x 10 17) кВт ч, достигает поверхности Земли.

Солнечное излучение в атмосфере Земли делится на так называемое прямое излучение и на рассеянное на частицах воздуха, пыли, воды, и т.п., содержащихся в атмосфере. Их сумма образует суммарное солнечное излучение. Количество энергии, падающей на единицу площади в единицу времени, зависит от ряда факторов:

широты, местного климата, сезона года, угла наклона поверхности по отношению к Солнцу.

ВРЕМЯ И МЕСТО

Количество солнечной энергии, падающей на поверхность Земли, изменяется вследствие движения Солнца. Эти изменения зависят от времени суток и времени года. Обычно в полдень на Землю попадает больше солнечной радиации, чем рано утром или поздно вечером. В полдень Солнце находится высоко над горизонтом, и длина пути прохождения лучей Солнца через атмосферу Земли сокращается. Следовательно, меньше солнечной радиации рассеивается и поглощается, а значит больше достигает земной поверхности.

Количество солнечной энергии, достигающей поверхности Земли, отличается от среднегодового значения: в зимнее время - менее чем на 0,8 кВт ч/м² в день на Севере (широта 50˚) и более чем на 4 кВт ч /м² в день в летнее время в этом же регионе. Различие уменьшается по мере приближения к экватору.

Количество солнечной энергии зависит и от географического месторасположения участка: чем ближе к экватору, тем оно больше. Например, среднегодовое суммарное солнечное излучение, падающее на горизонтальную поверхность, составляет: в Центральной Европе, Средней Азии и Канаде - приблизительно 1000 кВт ч/м²; в Средиземноморье - приблизительно 1700 кВт ч /м²; в большинстве пустынных регионов Африки, Ближнего Востока и Австралии - приблизительно 2200 кВт ч/м².

Таким образом, количество солнечной радиации существенно различается в зависимости от времени года и географического положения (см. таблицу 1). Этот фактор необходимо учитывать при использовании солнечной энергии.

Таблица 1

Количество солнечной радиации в Европе и странах Карибского бассейна, кВт ч/м² в день.
Южная Европа Центральная Европа Северная Европа Карибский регион
Январь 2,6 1,7 0,8 5,1
Февраль 3,9 3,2 1,5 5,6
Март 4,6 3,6 2,6 6,0
Апрель 5,9 4,7 3,4 6,2
Май 6,3 5,3 4,2 6,1
Июнь 6,9 5,9 5,0 5,9
Июль 7,5 6,0 4,4 6,4
Август 6,6 5,3 4,0 6,1
Сентябрь 5,5 4,4 3,3 5,7
Октябрь 4,5 3,3 2,1 5,3
Ноябрь 3,0 2,1 1,2 5,1
Декабрь 2,7 1,7 0,8 4,8
ГОД 5,0 3,9 2,8 5,7

ОБЛАКА

Количество солнечной радиации, достигающее поверхности Земли, зависит от различных атмосферных явлений и от положения Солнца как в течение дня, так и в течение года. Облака - основное атмосферное явление, определяющее количество солнечной радиации, достигающей поверхности Земли. В любой точке Земли солнечная радиация, достигающая поверхности Земли, уменьшается с увеличением облачности. Следовательно, страны с преобладающей облачной погодой получают меньше солнечной радиации, чем пустыни, где погода в основном безоблачная. На формирование облаков оказывает влияние наличие таких особенностей местного рельефа, как горы, моря и океаны, а также большие озера. Поэтому количество солнечной радиации, полученной в этих областях и прилегающих к ним регионах, может отличаться. Например, горы могут получить меньше солнечного излучения, чем прилегающие предгорья и равнины. Ветры, дующие в сторону гор, вынуждают часть воздуха подниматься и, охлаждая влагу, находящуюся в воздухе, формируют облака. Количество солнечной радиации в прибрежных районах также может отличаться от показателей, зафиксированных в областях, расположенных внутри континента.

Количество солнечной энергии, поступающей в течение дня, в значительной степени зависит от местных атмосферных явлений. В полдень при ясном небе суммарное солнечное излучение, попадающее на горизонтальную поверхность, может достигнуть (например, в Центральной Европе) значения в 1000 Вт/м² (при очень благоприятных погодных условиях этот показатель может быть выше), в то время, как при очень облачной погоде - ниже 100 Вт/м² даже в полдень.

ЗАГРЯЗНЕНИЕ

Антропогенные и природные явления также могут ограничивать количество солнечной радиации, достигающей поверхности Земли. Городской смог, дым от лесных пожаров и переносимый по воздуху пепел, образовавшийся в результате вулканической деятельности, снижают возможность использования солнечной энергии, увеличивая рассеивание и поглощение солнечной радиации. То есть, эти факторы в большей степени влияют на прямое солнечное излучение, чем на суммарное. При сильном загрязнении воздуха, например, при смоге, прямое излучение уменьшается на 40%, а суммарное - лишь на 15-25%. Сильное вулканическое извержение может понизить, причем на большой территории поверхности Земли, прямое солнечное излучение на 20%, а суммарное - на 10% на период от 6 месяцев до 2 лет. При уменьшении количества вулканического пепла в атмосфере эффект ослабевает, но процесс полного восстановления может занять несколько лет.

ПОТЕНЦИАЛ

Солнце обеспечивает нас в 10 000 раз большим количеством бесплатной энергии, чем фактически используется во всем мире. Только на мировом коммерческом рынке покупается и продается чуть меньше 85 триллионов (8,5 x 10 13) кВт ч энергии в год. Поскольку невозможно проследить за всем процессом в целом, нельзя с уверенностью сказать, сколько некоммерческой энергии потребляют люди (например, сколько древесины и удобрения собирается и сжигается, какое количество воды используется для производства механической или электрической энергии). Некоторые эксперты считают, что такая некоммерческая энергия составляет одну пятую часть всей используемой энергии. Но даже если это так, то общая энергия, потребляемая человечеством в течение года, составляет только приблизительно одну семитысячную часть солнечной энергии, попадающей на поверхность Земли в тот же период.

В развитых странах, например, в США, потребление энергии составляет примерно 25 триллионов (2.5 x 10 13) кВт ч в год, что соответствует более чем 260 кВт ч на человека в день. Данный показатель является эквивалентом ежедневной работы более чем ста лампочек накаливания мощностью 100 Вт в течение целого дня. Среднестатистический гражданин США потребляет в 33 раза больше энергии, чем житель Индии, в 13 раз больше, чем китаец, в два с половиной раза больше, чем японец и вдвое больше, чем швед.

Количество солнечной энергии, попадающей на поверхность Земли, во много раз превышает ее расход даже в таких странах как США, где энергопотребление огромно. Если бы только 1% территории страны был использован для установки солнечного оборудования (фотоэлектрические батареи или солнечные системы для горячего водоснабжения), работающего с КПД 10%, то США были бы полностью обеспечены энергией. То же самое можно сказать и в отношении всех других развитых стран. Однако, в определенном смысле, это нереально - во-первых, из-за высокой стоимости фотоэлектрических систем, во-вторых, невозможно охватить такие большие территории солнечным оборудованием, не нанося вред экосистеме. Но сам принцип является верным. Можно охватить ту же самую территорию, рассредоточив установки на крышах зданий, на домах, по обочинам, на заранее определенных участках земли и т.д. К тому же, во многих странах уже более 1% земли отведено под добычу, преобразование, производство и транспортировку энергии. И, поскольку большая часть этой энергии является не возобновляемой в масштабе существования человечества, этот вид производства энергии намного более вреден для окружающей среды, чем солнечные системы.

ИСПОЛЬЗОВАНИЕ СОЛНЕЧНОЙ ЭНЕРГИИ

В большинстве стран мира количество солнечной энергии, попадающей на крыши и стены зданий, намного превышает годовое потребление энергии жителями этих домов. Использование солнечного света и тепла - чистый, простой, и естественный способ получения всех форм необходимой нам энергии. При помощи солнечных коллекторов можно обогреть жилые дома и коммерческие здания и/или обеспечить их горячей водой. Солнечный свет, сконцентрированный параболическими зеркалами (рефлекторами), применяют для получения тепла (с температурой до нескольких тысяч градусов Цельсия). Его можно использовать для обогрева или для производства электроэнергии. Кроме этого, существует другой способ производства энергии с помощью Солнца - фотоэлектрические технологии. Фотоэлектрические элементы - это устройства, которые преобразовывают солнечную радиацию непосредственно в электричество.

Солнечная радиация может быть преобразована в полезную энергию, используя так называемые активные и пассивные солнечные системы. К активным солнечным системам относятся солнечные коллекторы и фотоэлектрические элементы. Пассивные системы получаются с помощью проектирования зданий и подбора строительных материалов таким образом, чтобы максимально использовать энергию Солнца.

Солнечная энергия преобразуется в полезную энергию и косвенным образом, трансформируясь в другие формы энергии, например, энергию биомассы, ветра или воды. Энергия Солнца "управляет" погодой на Земле. Большая доля солнечной радиации поглощается океанами и морями, вода в которых нагревается, испаряется и в виде дождей выпадает на землю, "питая" гидроэлектростанции. Ветер, необходимый ветротурбинам, образуется вследствие неоднородного нагревания воздуха. Другая категория возобновляемых источников энергии, возникающих благодаря энергии Солнца - биомасса. Зеленые растения поглощают солнечный свет, в результате фотосинтеза в них образуются органические вещества, из которых впоследствии можно получить тепловую и электрическую энергию. Таким образом, энергия ветра, воды и биомассы является производной солнечной энергии.

ПАССИВНОЕ ИСПОЛЬЗОВАНИЕ СОЛНЕЧНОЙ ЭНЕРГИ

Пассивные солнечные здания - это те, проект которых разработан с максимальным учетом местных климатических условий, и где применяются соответствующие технологии и материалы для обогрева, охлаждения и освещения здания за счет энергии Солнца. К ним относятся традиционные строительные технологии и материалы, такие как изоляция, массивные полы, обращенные к югу окна. Такие жилые помещения могут быть построены в некоторых случаях без дополнительных затрат. В других случаях возникшие при строительстве дополнительные расходы могут быть скомпенсированы снижением энергозатрат. Пассивные солнечные здания являются экологически чистыми, они способствуют созданию энергетической независимости и энергетически сбалансированному будущему.

В пассивной солнечной системе сама конструкция здания выполняет роль коллектора солнечной радиации. Это определение соответствует большинству наиболее простых систем, где тепло сохраняется в здании благодаря его стенам, потолкам или полам. Есть также системы, где предусмотрены специальные элементы для накопления тепла, вмонтированные в конструкцию здания (например, ящики с камнями или заполненные водой баки или бутыли). Такие системы также классифицируются как пассивные солнечные. Пассивные солнечные здания - идеальное место для жизни. Здесь полнее ощущается связь с природой, в таком доме много естественного света, в нем экономится электроэнергия.

ИСТОРИЯ

Исторически сложилось так, что на проектирование зданий влияли местные климатические условия и доступность строительных материалов. Позднее человечество отделило себя от природы, идя по пути господства и контроля над ней. Этот путь привел к однотипному стилю зданий практически для любой местности. В 100 году н. э. историк Плиний Младший построил летний домик в Северной Италии, в одной из комнат которого были окна из тонкой слюды. Комната была теплее других, и для ее обогрева требовалось меньше дров. В известных римских банях в I-IV ст. н. э. специально устанавливались большие окна, выходящие на юг, для того чтобы больше солнечного тепла поступало в здание. К VI ст. солнечные комнаты в домах и общественных зданиях стали настолько обычны, что Джастиниан Коуд ввел "право на солнце", чтобы гарантировать индивидуальный доступ к солнцу. В XIX веке были очень популярны оранжереи, в которых было модно прогуливаться под сенью пышной растительной листвы.

Из-за перебоев с электроэнергией во время второй мировой войны к концу 1947 года в Соединенных Штатах здания, пассивно использующие солнечную энергию , пользовались таким огромным спросом, что "Libbey-Owens-Ford Glass Company" издала книгу под названием "Ваш Солнечный Дом", в которой были представлены 49 лучших проектов солнечных зданий. В середине 50-х годов ХХ века, архитектор Франк Брайдджерс разработал первое в мире пассивное солнечное здание для офисного помещения. Установленная в нем солнечная система для горячего водоснабжения работает с того времени бесперебойно. Само же здание "Брайдджерс-Пэкстон" занесено в национальный исторический регистр страны как первое в мире офисное здание, обогреваемое при помощи энергии Солнца.

Низкие цены на нефть после второй мировой войны отвлекли внимание населения от солнечных зданий и вопросов энергоэффективности. Начиная с середины 1990-х, рынок меняет свое отношение к экологии и использованию возобновляемой энергии , и в строительстве появляются тенденции, для которых характерно сочетание проекта будущего здания с окружающей природой.

ПАССИВНЫЕ СОЛНЕЧНЫЕ СИСТЕМЫ

Существует несколько основных способов пассивного использования солнечной энергии в архитектуре. Используя их, можно создать множество различных схем, тем самым получая разнообразные проекты зданий. Приоритетами при постройке здания с пассивным использованием солнечной энергии являются: удачное расположение дома; большое количество окон, обращенных к югу (в Северном полушарии), чтобы пропускать больше солнечного света в зимнее время (и наоборот, небольшое количество окон, обращенных на восток или запад, чтобы ограничить поступление нежелательного солнечного света в летнее время); правильный расчет тепловой нагрузки на внутренние помещения, чтобы избежать нежелательных колебаний температуры и сохранять тепло в ночное время, хорошо изолированная конструкция здания.

Расположение, изоляция, ориентация окон и тепловая нагрузка на помещения должны представлять собой единую систему. Для уменьшения колебаний внутренней температуры изоляция должна быть помещена с внешней стороны здания. Однако в местах с быстрым внутренним обогревом, где требуется немного изоляции, или с низкой теплоемкостью, изоляция должна быть с внутренней стороны. Тогда дизайн здания будет оптимальным при любом микроклимате. Стоит отметить и тот факт, что правильный баланс между тепловой нагрузкой на помещения и изоляцией ведет не только к сбережению энергии, но также и к экономии строительных материалов.

АКТИВНЫЕ СОЛНЕЧНЫЕ СИСТЕМЫ

Во время проектирования здания также следует учитывать применение активных солнечных систем, таких как солнечные коллекторы и фотоэлектрические батареи. Это оборудование устанавливается на южной стороне здания. Чтобы максимизировать количество тепла в зимнее время, солнечные коллекторы в Европе и Северной Америке должны устанавливаться с углом наклона более 50° от горизонтальной плоскости. Неподвижные фотоэлектрические батареи получают в течение года наибольшее количество солнечной радиации, когда угол наклона относительно уровня горизонта равняется географической широте, на которой расположено здание. Угол наклона крыши здания и его ориентация на юг являются важными аспектами при разработке проекта здания. Солнечные коллекторы для горячего водоснабжения и фотоэлектрические батареи должны быть расположены в непосредственной близости от места потребления энергии. Главным критерием при выборе оборудования является его эффективность.

СОЛНЕЧНЫЕ КОЛЛЕКТОРЫ

С древнейших времен человек использует энергию Солнца для нагрева воды. В основе многих солнечных энергетических систем лежит применение солнечных коллекторов . Коллектор поглощает световую энергию Солнца и преобразует ее в тепло, которое передается теплоносителю (жидкости или воздуху) и затем используется для обогрева зданий, нагрева воды, производства электричества, сушки сельскохозяйственной продукции или приготовления пищи. Солнечные коллекторы могут применяться практически во всех процессах, использующих тепло.

Для типичного жилого дома или квартиры в Европе и Северной Америке нагрев воды - это второй по энергоемкости домашний процесс. Для ряда домов он даже является самым энергоемким. Использование энергии Солнца способно снизить стоимость бытового нагрева воды на 70%. Коллектор предварительно подогревает воду, которая затем подается на традиционную колонку или бойлер, где вода нагревается до нужной температуры. Это приводит к значительной экономии средств. Такую систему легко установить, она почти не требует ухода.

В наши дни солнечные водонагревательные системы используются в частных домах, многоквартирных зданиях, школах, автомойках, больницах, ресторанах, в сельском хозяйстве и промышленности. У всех перечисленных заведений есть нечто общее: в них используется горячая вода. Владельцы домов и руководители предприятий уже смогли убедиться в том, что солнечные системы для нагрева воды являются экономически выгодными и способны удовлетворить потребность в горячей воде в любом регионе мира.

ИСТОРИЯ

Люди нагревали воду при помощи Солнца с давних времен, до того, как ископаемое топливо заняло лидирующее место в мировой энергетике. Принципы солнечного отопления известны на протяжении тысячелетий. Покрашенная в черный цвет поверхность сильно нагревается на солнце, тогда как светлые поверхности нагреваются меньше, белые же меньше всех остальных. Это свойство используется в солнечных коллекторах - наиболее известных приспособлениях, непосредственно использующих энергию Солнца. Коллекторы были разработаны около двухсот лет назад. Самый известный из них - плоский коллектор - был изготовлен в 1767 году швейцарским ученым по имени Гораций де Соссюр. Позднее им воспользовался для приготовления пищи сэр Джон Гершель во время своей экспедиции в Южную Африку в 30-х годах ХIX века.

Технология изготовления солнечных коллекторов достигла практически современного уровня в 1908 году, когда Вильям Бейли изобрел коллектор с теплоизолированным корпусом и медными трубками. Этот коллектор весьма походил на современную термосифонную систему. К концу первой мировой войны Бейли продал 4 000 таких коллекторов, а бизнесмен из Флориды, купивший у него патент, к 1941 году продал почти 60 000 коллекторов. Введенное в США во время второй мировой войны нормирование меди привело к резкому падению рынка солнечных обогревателей.

До всемирного нефтяного кризиса 1973 года эти устройства пребывали в забвении. Однако кризис пробудил новый интерес к альтернативным источникам энергии. В результате возрос спрос и на солнечную энергию . Многие страны живо интересуются развитием этой области. Эффективность систем солнечного отопления с 1970-х постоянно возрастает благодаря использованию для покрытия коллекторов закаленного стекла с пониженным содержанием железа (оно пропускает больше солнечной энергии, чем обычное стекло), улучшенной теплоизоляции и прочному селективному покрытию.

ТИПЫ СОЛНЕЧНЫХ КОЛЛЕКТОРОВ

Типичный солнечный коллектор накапливает солнечную энергию в установленных на крыше здания модулях трубок и металлических пластин, окрашенных в черный цвет для максимального поглощения радиации. Они заключены в стеклянный или пластмассовый корпус и наклонены к югу, чтобы улавливать максимум солнечного света. Таким образом, коллектор представляет собой миниатюрную теплицу, накапливающую тепло под стеклянной панелью. Поскольку солнечная радиация распределена по поверхности, коллектор должен иметь большую площадь.

Существуют солнечные коллекторы различных размеров и конструкций в зависимости от их применения. Они могут обеспечивать хозяйство горячей водой для стирки, мытья и приготовления пищи, либо использоваться для предварительного нагрева воды для существующих водонагревателей. В настоящее время рынок предлагает множество различных моделей коллекторов. Их можно разделить на несколько категорий. К примеру, различают несколько видов коллекторов в соответствии с температурой, которую они дают:

Низкотемпературные коллекторы производят низкопотенциальное тепло, ниже 50 ˚С. Используются они для подогрева воды в бассейнах и в других случаях, когда требуется не слишком горячая вода.

Среднетемпературные коллекторы производят высоко- и среднепотенциальное тепло (выше 50˚ С, обычно 60-80˚ С). Обычно это остекленные плоские коллекторы, в которых теплопередача совершается посредством жидкости, либо коллекторы-концентраторы, в которых тепло концентрируется . Представителем последних является коллектор вакуумированный трубчатый , который часто используется для нагрева воды в жилом секторе.

Высокотемпературные коллекторы представляют собой параболические тарелки и используются в основном электрогенерирующими предприятиями для производства электричества для электросетей.

Интегрированный коллектор

Простейший вид солнечного коллектора - это "емкостной" или "термосифонный коллектор", получивший это название потому, что коллектор одновременно является и теплоаккумулирующим баком, в котором нагревается и хранится "одноразовая" порция воды. Такие коллекторы используются для предварительного нагрева воды, которая затем нагревается до нужной температуры в традиционных установках, например, в газовых колонках. В условиях домашнего хозяйства предварительно подогретая вода поступает в бак-накопитель. Благодаря этому снижается потребление энергии на последующий ее нагрев. Такой коллектор - недорогая альтернатива активной солнечной водонагревательной системе, не использующая движущихся частей (насосов), требующая минимального техобслуживания, с нулевыми эксплуатационными расходами. Интегрированные коллекторы-накопители состоят из одного или нескольких черных баков, наполненных водой и помещенных в теплоизолированный ящик, накрытый стеклянной крышкой. Иногда в ящик помещают также рефлектор, усиливающий солнечное излучение. Свет проходит сквозь стекло и нагревает воду. Эти устройства совсем недороги, однако перед наступлением холодов воду из них необходимо слить либо защитить от замерзания.

Плоские коллекторы

Плоские коллекторы - самый распространенный вид солнечных коллекторов, используемых в бытовых водонагревательных и отопительных системах. Обычно этот коллектор представляет собой теплоизолированный металлический ящик со стеклянной либо пластмассовой крышкой, в который помещена окрашенная в черный цвет пластина абсорбера (поглотителя). Остекление может быть прозрачным либо матовым. В плоских коллекторах обычно используется матовое, пропускающее только свет, стекло с низким содержанием железа (оно пропускает значительную часть поступающего на коллектор солнечного света). Солнечный свет попадает на тепловоспринимающую пластину, а благодаря остеклению снижаются потери тепла. Дно и боковые стенки коллектора покрывают теплоизолирующим материалом, что еще больше сокращает тепловые потери.

Пластину абсорбера обычно окрашивают в черный цвет, так как темные поверхности поглощают больше солнечной энергии, чем светлые. Солнечный свет проходит через остекление и попадает на поглощающую пластину, которая нагревается, превращая солнечную радиацию в тепловую энергию. Это тепло передается теплоносителю - воздуху или жидкости, циркулирующей по трубкам. Поскольку большинство черных поверхностей все же отражает порядка 10% падающей радиации, некоторые пластины-поглотители обрабатываются специальным селективным покрытием, которое лучше удерживает поглощенный солнечный свет и служит дольше, чем обычная черная краска. Селективное покрытие, используемое в солнечных панелях, состоит из очень прочного тонкого слоя аморфного полупроводника, нанесенного на металлическое основание. Селективные покрытия отличаются высокой поглощающей способностью в видимой области спектра и низким коэффициентом излучения в длинноволновой инфракрасной области.

Поглощающие пластины обычно изготовлены из металла, хорошо проводящего тепло (чаще всего меди или алюминия). Медь дороже, но лучше проводит тепло и меньше подвержена коррозии, чем алюминий. Пластина-поглотитель должна иметь высокую теплопроводность, чтобы с минимальными теплопотерями передавать воде накопленную энергию. Плоские коллекторы делятся на жидкостные и воздушные. Оба вида коллекторов бывают остекленными или неостекленными.

Жидкостные коллекторы

В жидкостных коллекторах солнечная энергия нагревает жидкость, текущую по трубкам, прикрепленным к поглощающей пластине. Тепло, поглощенное пластиной, немедленно передается жидкости.

Трубки могут располагаться параллельно друг другу, причем на каждой имеются входное и выпускное отверстия, либо в виде змеевика. Змеевидное расположение трубок устраняет возможность протекания через соединительные отверстия и обеспечивает равномерный поток жидкости. С другой стороны, при спуске жидкости во избежание замерзания могут возникнуть трудности, так как в изогнутых трубках может местами оставаться вода.

В самых простых жидкостных системах используется обычная вода, которая нагревается прямо в коллекторе и поступает в ванную, кухню и т.п. Эта модель известна как "разомкнутая" (либо "прямая") система. В регионах с холодным климатом жидкостные коллекторы нуждаются в спуске воды в холодное время года, когда температура опускается до точки замерзания; либо в качестве теплоносителя используется незамерзающая жидкость. В таких системах жидкий теплоноситель поглощает тепло, накопленное коллектором, и проходит через теплообменник. Теплообменником обычно служит установленный в доме водяной бак, в котором тепло передается воде. Эта модель называется "замкнутой системой".

Остекленные жидкостные коллекторы используются для нагрева бытовой воды, а также для отопления помещений. Неостекленные коллекторы обычно нагревают воду для бассейнов. Поскольку таким коллекторам не нужно выдерживать высокую температуру, в них применяются недорогие материалы: пластмасса, резина. Они не нуждаются в защите от замерзания, так как используются в теплое время года.

Воздушные коллекторы

Воздушные коллекторы имеют то преимущество, что им не свойственны проблемы замерзания и кипения теплоносителя, от которых порой страдают жидкостные системы. И хотя утечку теплоносителя в воздушном коллекторе труднее заметить и устранить, она приносит меньше неприятностей, чем утечка жидкости. В воздушных системах часто используются более дешевые материалы, чем в жидкостных. Например, пластмассовое остекление, потому, что рабочая температура в них ниже.

Воздушные коллекторы представляют собой простые плоские коллекторы и используются в основном для отопления помещений и сушки сельскохозяйственной продукции. Поглощающими пластинами в воздушных коллекторах служат металлические панели, многослойные экраны, в том числе и из неметаллических материалов. Воздух проходит через поглотитель благодаря естественной конвекции или под воздействием вентилятора. Поскольку воздух хуже проводит тепло, чем жидкость, он передает поглотителю меньше тепла, чем жидкий теплоноситель. В некоторых солнечных воздухонагревателях к поглощающей пластине присоединены вентиляторы, которые увеличивают турбулентность воздуха и улучшают теплопередачу. Недостаток этой конструкции в том, что она расходует энергию на работу вентиляторов, таким образом увеличивая затраты на эксплуатацию системы. В холодном климате воздух направляется в промежуток между пластиной-поглотителем и утепленной задней стенкой коллектора: таким образом избегают потерь тепла сквозь остекление. Однако, если воздух нагревается не более, чем на 17˚С выше температуры наружного воздуха, теплоноситель может циркулировать по обе стороны от пластины-поглотителя без больших потерь эффективности.

Основными достоинствами воздушных коллекторов являются их простота и надежность. Такие коллекторы имеют простое устройство. При надлежащем уходе качественный коллектор может прослужить 10-20 лет, а управление им весьма несложно. Теплообменник не требуется, так как воздух не замерзает.

Солнечные трубчатые вакуумированные коллекторы

Традиционные простые плоские солнечные коллекторы были спроектированы для применения в регионах с теплым солнечным климатом. Они резко теряют в эффективности в неблагоприятные дни - в холодную, облачную и ветреную погоду. Более того, вызванные погодными условиями конденсация и влажность приводят к преждевременному износу внутренних материалов, а это, в свою очередь, - к ухудшению эксплуатационных качеств системы и ее поломкам. Эти недостатки устраняются путем использования вакуумированных коллекторов.

Вакуумированные коллекторы нагревают воду для бытового применения там, где нужна вода более высокой температуры. Солнечная радиация проходит сквозь наружную стеклянную трубку, попадает на трубку-поглотитель и превращается в тепло. Оно передается жидкости, протекающей по трубке. Коллектор состоит из нескольких рядов параллельных стеклянных трубок, к каждой из которых прикреплен трубчатый поглотитель (вместо пластины-поглотителя в плоских коллекторах) с селективным покрытием. Нагретая жидкость циркулирует через теплообменник и отдает тепло воде, содержащейся в баке-накопителе.

Вакуумированные коллекторы являются модульными, т.е. трубки можно добавлять или убирать по мере надобности, в зависимости от потребности в горячей воде. При изготовлении коллекторов этого типа из пространства между трубками высасывается воздух и образуется вакуум. Благодаря этому устраняются потери тепла, связанные с теплопроводностью воздуха и конвекцией, вызванной его циркуляцией. Остается радиационная потеря тепла (тепловая энергия движется от теплой к холодной поверхности, даже в условиях вакуума). Однако эта потеря мала и незначительна по сравнению с количеством тепла, передаваемого жидкости в трубке-поглотителе. Вакуум в стеклянной трубке - лучшая из возможных теплоизоляций для коллектора - снижает потери тепла и защищает поглотитель и теплоотводящую трубку от неблагоприятных внешних воздействий. Результат - отличные рабочие характеристики, превосходящие любой другой вид солнечного коллектора.

Существует множество различных видов вакуумированных коллекторов. В некоторых внутри трубки-поглотителя проходит еще одна, третья стеклянная трубка; есть и другие конструкции теплопередающих ребер и жидкостных трубок. Существует вакуумный коллектор, который вмещает по 19 литров воды в каждой трубке, устраняя, таким образом, потребность в отдельном баке для хранения воды. Можно также разместить позади вакуумных трубок рефлекторы, чтобы дополнительно концентрировать на коллекторе солнечную радиацию.

В регионах с высокими перепадами температур эти коллекторы гораздо эффективнее плоских по ряду причин. Во-первых, они хорошо работают в условиях как прямой, так и рассеянной солнечной радиации. Эта особенность в сочетании со свойством вакуума сводить к минимуму потери тепла наружу делает эти коллекторы незаменимыми в условиях холодной пасмурной зимы. Во-вторых, благодаря округлой форме вакуумной трубки, солнечный свет падает перпендикулярно поглотителю в течение большей части дня. Для сравнения, в неподвижно закрепленном плоском коллекторе солнечный свет падает перпендикулярно его поверхности только в полдень. Вакуумированные коллекторы отличаются более высокой температурой воды и эффективностью, чем плоские, но при этом они и дороже.

Концентраторы

Фокусирующие коллекторы (концентраторы) используют зеркальные поверхности для концентрации солнечной энергии на поглотителе, который также называется "теплоприемник". Достигаемая ими температура значительно выше, чем на плоских коллекторах, однако они могут концентрировать только прямое солнечное излучение, что приводит к плохим показателям в туманную или облачную погоду. Зеркальная поверхность фокусирует солнечный свет, отраженный с большой поверхности, на меньшую поверхность абсорбера, благодаря чему достигается высокая температура. В некоторых моделях солнечное излучение концентрируется в фокусной точке, тогда как в других лучи солнца концентрируются вдоль тонкой фокальной линии. Приемник расположен в фокусной точке или вдоль фокальной линии. Жидкость-теплоноситель проходит через приемник и поглощает тепло. Такие коллекторы-концентраторы наиболее пригодны для регионов с высокой инсоляцией - близко к экватору, в резко континентальном климате и в пустынных районах.

Концентраторы работают лучше всего тогда, когда они обращены прямо к Солнцу. Для этого используются следящие устройства, которые в течение дня поворачивают коллектор "лицом" к Солнцу. Одноосные следящие устройства поворачиваются с востока на запад; двуосные - с востока на запад и углу над горизонтом (чтобы следить за движением Солнца по небу в течение года). Концентраторы используются в основном в промышленных установках, так как они дороги, а следящие устройства нуждаются в постоянном уходе. В некоторых бытовых солнечных энергосистемах используются параболические концентраторы. Эти установки применяются для горячего водоснабжения, отопления и очистки воды. В бытовых системах применяются в основном одноосные следящие устройства - они дешевле и проще двуосных.

4.1.1. Оценка валового энергетического ресурса (потенциала) солнечной энергии

Анализ факторов, влияющих на величину валового энергетического ресурса солнечной энергии. Энергия солнечной радиации, падающая на Землю, в 10000 раз превышает количество энергии, вырабатываемой человечеством. На мировом коммерческом рынке покупается и продается около 85∙10 3 млрд. кВт·ч энергии в год. Крайне сложно оценить, сколько некоммерческой энергии потребляет человечество. Некоторые эксперты считают, что некоммерческая составляющая близка к 20% от всей используемой энергии.

Потребление электроэнергии по России в целом в 2015 году составило 1,036∙10 3 млрд. кВт ч. Российская Федерация обладает огромным валовым ресурсом использования солнечной энергии. Энергия суммарного годового солнечного излучения, попадающего на горизонтальную поверхность территории нашей страны составляет около 20,743∙10 6 млрд. кВт∙час/год, что превышает потребность в энергии примерно в 20000 раз.

Облучение земной поверхности солнечной радиацией, оказывающей световое, тепловое и бактерицидное воздействие, называют инсоляцией .

Инсоляция измеряется количеством энергии солнечного излучения, падающей на единицу горизонтальной поверхности в единицу времени.

Поток солнечного излучения, проходящий через площадку в 1 м 2 , расположенную перпендикулярно потоку излучения на расстоянии одной астрономической единицы от центра Солнца (то есть вне атмосферы Земли), равен 1367 Вт/ м 2 - солнечная постоянная.

Из-за поглощения атмосферой Земли, максимальный поток солнечного излучения на уровне моря - 1020 Вт/м 2 . Однако следует учесть, что среднесуточное значение потока солнечного излучения через единичную площадку как минимум в три раза меньше (из-за смены дня и ночи и изменения угла солнца над горизонтом). Зимой в умеренных широтах это значение в два раз меньше. Это количество энергии с единицы площади определяет возможности солнечной энергетики. Перспективы выработки солнечной энергии также уменьшаются из-за глобального затемнения - антропогенного уменьшения солнечного излучения, доходящего до поверхности Земли.

Суммарное солнечное излучение в атмосфере Земли складывается из прямого и рассеянного излучений . Количество энергии, падающей на единицу площади в единицу времени, зависит от:

– географической широты местности,

– местного климата и времени года,

– плотности, влажности и степени загрязнения атмосферного воздуха,

– годового и суточного движения Земли,

– характера земной поверхности,

– от угла наклона поверхности, на которую попадает излучение, по отношению к Солнцу.

Атмосфера поглощает часть солнечной энергии. Чем больше длина пути солнечных лучей в атмосфере, тем меньше прямой солнечной энергии доходит до поверхности земли. Когда Солнце находится в зените (угол падения лучей 90°), его лучи попадают на Землю кратчайшим путем и интенсивно отдают свою энергию малой площади. На Земле это происходит в районе экватора в зоне тропиков. По мере удаления от этой зоны на юг или на север длина пути солнечных лучей растет и уменьшается угол их падения на земную поверхность. В результате:

увеличиваются потери энергии в атмосферном воздухе,

солнечное излучение распределяется на большую территорию,

уменьшая количество прямой энергии, попадающей на единицу площади, и

увеличивая долю рассеянного излучения.

Кроме того, от широты местности зависит и продолжительность дня в разные времена года, что также определяет величину солнечной радиации, поступающей на поверхность земли. Важным фактором, определяющим потенциала солнечной энергии, является продолжительность солнечного излучения в течение года (рис. 4.1).

Рис. 4.1. Продолжительность солнечного сияния на территории России, час/год

Для высокоширотных территорий, где значительная часть зимнего времени приходится на полярную ночь, различие в поступлении радиации летом и зимой может быть достаточно велико. Так за Полярным кругом продолжительность солнечного сияния изменяется от 0 часов в декабре до 200 – 300 часов в июне и июле при годовой продолжительности около 1200 – 1600 часов. На севере страны количество солнечной энергии, достигающей поверхности Земли, в зимнее время отличается от среднегодового значения менее чем на 0,8 кВт·ч/(м 2 ×день), в летнее время - более чем на 4 кВт·ч /м 2 . Если в зимние месяцы уровни солнечной радиации в северных и южных регионах России сильно отличаются, то летние показатели инсоляции на этих территориях за счет длительного светового дня в северных широтах оказываются вполне соизмеримыми. Однако из-за более низкой годовой продолжительности солнечного сияния приполярные территории уступают по суммарной солнечной радиации районам средней полосы и юга соответственно в 1,3 и 1,7 раза.

Климатические условия в конкретной местности определяют продолжительность и уровень облачности в регионе, влажность и плотность воздуха. Облака - основное атмосферное явление, уменьшающее количество солнечной энергии, достигающей поверхности Земли. На их формирование оказывает влияние такие особенностей местного рельефа, как горы, моря и океаны, а также большие озера. Поэтому количество солнечной радиации, полученной в этих областях и прилегающих к ним регионах, может отличаться.

Характер земной поверхности и рельефа местности сказывается и на ее отражательной способности. Способность поверхности отражать радиацию называетсяальбедо (от латинского - белизна). Установлено, что альбедо земной поверхности изменяется в весьма широких пределах. Так, альбедо чистого снега равно 85-90 %, песка – 30-35%, чернозема – 5-14%, листьев зеленых – 20-25%, листьев желтых – 33-39%, водной поверхности при высоте Солнца 90 0 – 2%, водной поверхности при высоте Солнца 20 0 – 78 %. Отраженная радиация увеличивает составляющую рассеянного излучения.

Антропогенные и природные загрязнения атмосферы также могут ограничивать количество солнечной радиации, которое может попасть на земную поверхность. Городской смог, дым от лесных пожаров и переносимый по воздуху пепел, образовавшийся в результате вулканической деятельности, снижают возможность использования солнечной энергии, увеличивая рассеивание и поглощение солнечной радиации. Эти факторы в большей степени влияют на прямое солнечное излучение, чем на суммарное. При сильном загрязнении воздуха, например, при смоге, прямое излучение уменьшается на 40%, а суммарное - лишь на 15-25%. Сильное вулканическое извержение может понизить, причем на большой территории поверхности Земли, прямое солнечное излучение на 20%, а суммарное - на 10% на период от 6 месяцев до 2 лет. При уменьшении количества вулканического пепла в атмосфере эффект ослабевает, но процесс полного восстановления может занять несколько лет.

Количество солнечной энергии, падающей на принимающую ее поверхность, изменяется и при изменении положения Солнца в течение суток в разные месяцы года. Обычно в полдень на Землю попадает больше солнечной радиации, чем рано утром или поздно вечером. В полдень Солнце находится высоко над горизонтом, и длина пути прохождения солнечных лучей через атмосферу Земли сокращается. Следовательно, меньше солнечной радиации рассеивается и поглощается, а значит, больше достигает поверхности. Кроме того, отклонение угла падения солнечных лучей на принимающую поверхность от 90 о приводит к снижению количества попадающей на единицу площади энергии – эффект проекции. Влияние этого эффекта на уровень инсоляции можно увидеть на рисунке 4.2.



Рис. 4.2. Влияние изменения угла падения солнечных лучей на величину

инсоляции – эффект проекции

Один поток солнечной энергии шириной в 1 км падает на землю под углом 90 °, а другой той же ширины - под углом 30 °. Оба потока несут одинаковое количество энергии. В этом случае косой солнечный луч распространяет свою энергию на площадь в два раза большую, чем луч, перпендикулярный к принимающей поверхности, а, следовательно, на единицу площади в единицу времени будет поступать вдвое меньше энергии.

Земная поверхность, поглощая солнечную радиацию(поглощенная радиация), нагревается и сама излучает тепло в атмосферу(отраженная радиация). Нижние слои атмосферы в значительной мерс задерживают земное излучение. Поглощенная земной поверхностью радиация расходуется на нагрев почвы, воздуха, воды.

Та часть суммарной радиации, которая остается после отражения и теплового излучения земной поверхности, называется радиационным балансом. Радиационный баланс земной поверхности меняется в течение суток и по сезонам года.

Источники информации для оценки величины валового ресурса (потенциала) солнечной энергии. Информационной основой для оценки величины этого валового ресурса (потенциала) солнечной энергии являются данные измерений солнечной радиации в различных регионах страны с последующим делением территории региона на зоны с относительно однородным значением уровня инсоляции. Для этих целей необходимы данные, сформированные с использованием результатов актинометрических наблюдений, т.е. данные об интенсивности прямой, рассеянной и суммарной солнечной радиации, о радиационном балансе и характере отражения излучения от земной поверхности (альбедо).

Учитывая резкое сокращение числа метеостанций, ведущих наземные актинометрические наблюдения на территории России, в 2014 году для оценки валового потенциала (ресурса) солнечной энергии использовалась информация о распределении ресурсов энергии солнца базы данных NASA Surface meteorology and Solar Energy (NASA SSE) . Эта база формировалась на основе спутниковых измерений радиационного баланса земной поверхности, проводившихся в рамках программы World Climate Research Program’s International Satellite and Cloud Climatology Program (ISCCP) с июля 1983 года по июнь 2005 года. По их результатам с учетом характера отражения излучения от земной поверхности, состояния облачности, загрязнения атмосферы аэрозолями и других факторов рассчитаны значения месячных сумм солнечной радиации, падающей на горизонтальную поверхность, для сетки 1º×1º, покрывающей весь земной шар, включая и территорию Российской Федерации.

Расчет общей радиации, падающей на наклонную поверхность, с заданным углом ориентации. При оценке потенциала необходимо иметь возможность определять величину общей радиации, попадающей в определенное время на наклонную поверхность, ориентированную по отношению к поверхности земли под интересующим нас углом .

Прежде, чем приступить к описанию методики расчета общей радиации, следует ввести основные понятия, связанные оценкой солнечной радиации.

Рассмотрение будет производиться в горизонтальной системе координат. В этой системе начало координат помещается в точке нахождения наблюдателя на поверхности земли. В качестве основной плоскости выступает горизонтальная плоскость - плоскость математического горизонта . Одной координатой в этой системе является либо высота солнца α , либо его зенитное расстояние z . Другой координатой является азимут а.

Математи́ческий горизо́нт - большой круг небесной сферы, плоскость которого перпендикулярна к отвесной линии в точке нахождения наблюдателя.

Математический горизонт не совпадает с видимым горизонтом вследствие неровности поверхности Земли, различной высотой точек наблюдения, а также искривления лучей света в атмосфере.

Зенитный угол Солнца z - это угол между солнечным лучом и нормалью к горизонтальной плоскости в точке наблюдения А.

Угол высоты Солнца α - это угол в вертикальной плоскости между солнечным лучом и его проекцией на горизонтальную плоскость. Сумма α+z равна 90°.

Азимут Солнца а - это угол в горизонтальной плоскости между проекцией солнечного луча и направлением на юг.

Азимут поверхности а п измеряется как угол между нормалью к рассматриваемой поверхности и направлением на юг.

Угол склонение Солнца - это угол между линией, соединяющей центры Земли и Солнца, и ее проекцией на плоскость экватора. Склонение Солнца в течение года непрерывно изменяется - от -23°27" в день зимнего солнцестояния 22 декабря до +23°27" в день летнего солнцестояния 22 июня и равно нулю в дни весеннего и осеннего равноденствия (21 марта и 23 сентября).

Местное истинное солнечное время – это время, определяемое в месте нахождения наблюдателя видимым положением Солнца на небесной сфере. 12 часов по местному солнечному времени соответствует времени, когда Солнце находится в зените (выше всего на небе).

Местное время обычно отличается от местного солнечного времени из-за наличия эксцентриситета земной орбиты, использования людьми временных зон и искусственных временных смещений для экономии энергии.

Небесный экватор – это большой круг небесной сферы, плоскость которого перпендикулярна оси мира (ось вращения земли) и совпадает с плоскостью земного экватора.

Небесный экватор делит поверхность небесной сферы на два полушария: северное полушарие, с вершиной в северном полюсе мира, и южное полушарие, с вершиной в южном полюсе мира.

Небесный меридиан - большой круг небесной сферы, плоскость которого проходит через отвесную линию и ось мира (ось вращения земли).

Часовой угол - угловое расстояние, измеренное вдоль небесного экватора на запад от небесного меридиана (той его части, которую солнце пересекает в момент верхней кульминации) до часового круга, проходящего через избранную точку на небесной сфере.

Часовой угол является результатом перевода местного солнечного времени в число градусов, которое солнце проходит по небу. По определение часовой угол равен нулю в полдень. Так как Земля поворачивается на 15 0 за один час (360 о /24 часа), то за каждый час после полудня Солнце проходит 15 0 . Утром угол солнца отрицательный, вечером - положительный.

В качестве исходной информации для расчета общей радиации используется значения следующих показателей, полученных путем статистической обработки данных наблюдений:

– среднемесячное количество общей солнечной радиации, падающей на горизонтальную площадку в течение суток, ;

– среднемесячное количество рассеянной (диффузной) солнечной радиации, падающей на горизонтальную площадку в течение суток, ;

– альбедо поверхности земли - среднемесячное отношение количества солнечной радиации, отраженной поверхностью земли, к количеству общей солнечной радиации, падающей на поверхность земли (т.е. доля радиации отраженной поверхностью земли), доля.

Все дальнейшие расчеты проводятся для «среднего дня месяца», т.е. дня, у которого угол склонения Солнца наиболее близок к среднемесячному углу .

Солнечная радиация на горизонтальную поверхность . С использованием этой информации производится расчет значений общей ( и рассеянной () солнечных радиаций, падающих на горизонтальную поверхность за t -й час наблюдения:

И – коэффициенты перехода от суточных радиаций к часовым - определяются следующим образом:

– часовой угол в t -й расчетный час суток, град.;

– часовой угол захода солнца (заката), град.

Часовой угол солнца рассчитывается с использованием соотношения

– время солнечного полдня, информацию о котором можно найти в Базе Данных NASA, час.

Часовой угол захода солнца оценивается как

– широта, град.;

– угол склонения солнца, град.

Угол склонения Солнца определяют по следующей формуле

– день года (от 1 до 365).

Солнечная радиация на произвольно-ориентированную наклонную поверхность. Расчет часовых значений общей солнечной радиации , падающей на ориентированную под углом к горизонту наклонную поверхность, производится следующим образом

– угол падения прямой солнечной радиации на произвольно-ориентированную под углом к горизонту наклонную поверхность в t -й час, град.;

– зенитный угол Солнца в t -й час, град.;

– угол наклона поверхности к горизонту, град.;

Зенитный угол Солнца

Угол падения прямой солнечной радиации на произвольно-ориентированную под углом к горизонту наклонную поверхность:

– азимутальный угол Солнца в t -й час суток, град.;

– азимут наклонной поверхности, град.

Расчет угла падения прямой солнечной радиации на произвольно-ориентированную под углом к горизонту наклонную поверхность можно произвести и с использованием следующих соотношений:

Рассмотренные выше соотношения могут быть использованы для оценки энергетического потенциала солнца с дифференциацией на часовые (или трехчасовые) интервалы суток.

Валовый электроэнергетический ресурс (потенциал) солнечной энергии. Для оценки валового электроэнергетического ресурса энергии солнца на территории нашей страны использовались среднемесячные дневные значения суммарной солнечной радиации, падающей на 1 м 2 горизонтальной плоскости (кВт·ч/(м 2 ∙день)). На основе этой информации с дифференциацией по субъектам федерации оценено среднее количество солнечной радиации в млн. кВт∙ч, попадающей на 1 квадратный километр территории в течение года (или в кВт∙ч /(м 2 ∙год)) рис. 4.3.

Рис. 4.3. Распределение годовых ресурсов солнечной энергии на территории Российской Федерации с детализацией по субъектам федерации

На карте каждому субъекту федерации поставлен в соответствие его код.

Список субъектов федерации с указанием их кодов с дифференциацией по федеральным округам России представлен ниже. С учетом специфики оценки энергетического потенциала ВИЭ города Москва и Санкт-Петербург объедены с Московской и Ленинградской областями соответственно с присвоением объединенной территории кода области. Субъекты федерации с большой протяженности с Севера на Юг могут быть разделены на части: Север, Центр, Юг.

1. Центральный ФО : (31) Белгородская область, (32) Брянская область, (33) Владимирская область, (36) Воронежская область, (37) Ивановская область, (40) Калужская область, (44) Костромская область, (46) Курская область, (48) Липецкая область, (50) Московская область и Москва, (57) Орловская область, (62) Рязанская область, (67) Смоленская область, (68) Тамбовская область, (69) Тверская область, (71) Тульская область, (76) Ярославская область.

2. Северо-Западный ФО: (10) Республика Карелия, (11) Республика Коми, (29) Архангельская область, (35) Вологодская область, (39) Калининградская область, (47) Ленинградская область и Санкт-Петербург, (51) Мурманская область, (53) Новгородская область, (60) Псковская область, (83) Ненецкий АОк.

3. Южный ФО: (1) Республика Адыгея, (8) Республика Калмыкия, (23) Краснодарский край, (30) Астраханская область, (34) Волгоградская область, (61) Ростовская область, (91) Республика Крым и Севастополь.

4. Северо-Кавказский ФО: (5) Республика Дагестан, (6) Республики Ингушетия, (7) Республика Кабардино-Балкария, (9) Республика Карачаево-Черкесия, (15) Республика Северная Осетия-Алания, (20) Чеченская республика, (26) Ставропольский край.

5. Приволжский ФО: (2) Республика Башкортостан, (12) Республика Марий Эл, (13) Республика Мордовия, (16) Республика Татарстан, (18) Республика Удмуртия, (21) Республика Чувашия, (43) Кировская область, (52) Нижегородская область, (56) Оренбургская область, (58) Пензенская область, (59) Пермский край, (63) Самарская область, (64) Саратовская область, (73) Ульяновская область.

6. Уральский ФО: (45) Курганская область, (66) Свердловская область, (72) Тюменская область, (74) Челябинская область, (86) Ханты-Мансийский Аок-Югра, (89) Ямало-Ненецкий АОк.

7. Сибирский ФО : (3) Республика Бурятия, (4) Республика Алтай, (17) Республика Тыва, (19) Республика Хакасия, (22) Алтайский край, (24) Красноярский край (24-1. Север, 24-2. Центр, 24-3. Юг), (38) Иркутская область (38-1. Север, 38-2. Юг), (42) Кемеровская область, (54) Новосибирская область, (55) Омская область, (70) Томская область, (75) Забайкальский край.

8. Дальневосточный ФО: (14) Республика Саха (Якутия) (14-1. Север, 14-2. Центр, 14-3. Юг), (25) Приморский край, (27) Хабаровский край, (27-1. Север, 27-2. Юг), (28) Амурская область, (41) Камчатский край, (49) Магаданская область, (65) Сахалинская область, (79) Еврейская АО, (87) Чукотский АОк.

Бытующее мнение о том, что Россия, расположенная преимущественно в средних и высоких широтах, не располагает значительными ресурсами солнечной энергии для ее эффективного энергетического использования, не соответствует действительности. На изображенной ниже карте (рис.4.4) приведено среднегодовое распределение ресурсов энергии солнечной радиации по территории России, поступающей в среднем за день на 1 площадки южной ориентации с оптимальным углом наклона к горизонту (для каждой географической точки это свой угол, при котором суммарное за год поступление энергии солнечной радиации на единичную площадку максимально).

Рис.4.4. Распределение годовых среднедневных поступлений солнечной

радиации по территории России, кВт×час/(м 2 ×день) (оптимально

ориентированная поверхность южной ориентации)

Рассмотрение представленной карты показывает, что в сегодняшних границах России наиболее "солнечными" являются не районы Северного Кавказа, как предполагают многие, а регионы Приморья и юга Сибири (4,5-5 кВт×час/(м 2 ×день) и выше). Интересно, что известные черноморские курорты (Сочи и др.), по среднегодовому поступлению солнечной радиации (с точки зрения природного потенциала и ресурса солнечной инсоляции) относятся к той же зоне, что и большая часть Сибири, включая Якутию (4,0-4,5 кВт×час/(м 2 ×день)).

Для энергетически плохо обеспеченных районов с децентрализованным энергоснабжением важным является тот факт, что более 60 % территории страны, в том числе и многие северные регионы, характеризуются среднегодовым дневным поступлением солнечной радиации от 3,5 до 4,5 кВт×час/(м 2 ×день), что не отличается от юга Германии, широко использующего солнечные установки.

Анализ карты свидетельствует, что в Российской Федерации наибольшая интенсивность инсоляции от 4,5 до 5,0 кВт×час/м 2 и более в день наблюдается в Приморье, на юге Сибири, на юге Республики Тыва и Республики Бурятия, и даже за Полярным Кругом в восточной части Северной Земли, а не в южных районах страны. По солнечному потенциалу, 4,0 - 4,5 кВт×час/(м 2 ×день), Краснодарский край, Ростовская область, южная часть Поволжья, большая часть Сибири (включая Якутию), южные районы Новосибирской, Иркутской областей, Бурятия, Тыва, Хакассия, Приморский и Хабаровский край, Амурская область, остров Сахалин, обширные территории от Красноярского края до Магадана, Северная Земля, северо-восток Ямало-Ненецкого АО относятся к той же зоне, что и Северный Кавказ с известными российскими черноморскими курортами. Для Нижнего Новгорода, Москвы, Санкт-Петербурга, Салехарда, восточной части Чукотки и Камчатки характерна средняя солнечная радиация от 2,5 до 3 кВт×час/м 2 в день. На остальной территории страны преобладает интенсивность инсоляции от 3 до 4 кВт×час/м 2 в день.

Наибольшую интенсивность поток энергии имеет в мае, июне и июле. В этот период в средней полосе России на 1 кв. метр поверхности приходится 5 кВт×час в день. Наименьшая интенсивность в декабре-январе, когда 1 кв. метр поверхности приходится 0,7 кВт×час в день.

Учитывая сложившуюся ситуацию, на карте Украины (рис. 4.3) можно проанализировать уровень солнечной радиации на территории Крыма.

Рис. 4.3. Распределение годовых поступлений солнечной радиации по

территории Украины, кВт×час/(м 2 ×год) (оптимально ориентированная

поверхность южной ориентации)

Валовый теплоэнергетический ресурс солнечной энергии. Валовой теплоэнергетический ресурс (потенциал) задает максимальное количество тепловой энергии, соответствующее энергии поступающего на территорию России солнечного излучения.

Информацией для оценки этого ресурса может служить инсоляция в мега- или килокалориях на единицу площади принимающей излучение поверхности в единицу времени.

Рисунок 4.4 дает представление о распределении суммарная солнечной радиации на горизонтальную поверхность территории Российской Федерации в килокалориях на 1 см 2 в год.

Рис.4.4. Распределение годовых поступлений солнечной радиации по

территории России, ккал/(см 2 ×год)

Комплексное районирование территории России по потенциалу солнечной радиации можно увидеть на рисунке 4.6. Выделено 10 зон по приоритету потенциала использования. Очевидно, что наиболее благоприятными условиями для практического использования энергии солнца обладают южные районы европейской части, юг Забайкалья и Дальнего Востока.

Рис. 19. Районирование территории России по потенциалу солнечной

радиации (цифра в кружке – номер по приоритету потенциала)

Значения валовых энергетических потенциалов солнечной энергии с дифференциацией по федеральным округам Российской Федерации .


При оценке технического потенциала солнечной электроэнергетики были использованы показатели наиболее распространенных (90%) в то время фотоэлектрических элементов на кремниевой основе с КПД 15%. Рабочая площадь солнечных установок с учетом плотности размещения фотоэлементов в фотоэлектрических модулях принималась равной 0,1 % от площади однородной по уровню радиации территории рассматриваемого региона. Технический потенциал рассчитывался в тоннах условного топлива как произведение валового солнечного потенциала территории на долю площади, занимаемой фотоэлементами, и их КПД.

Определение технического теплоэнергетического потенциала региона ориентировано на технические возможности преобразования энергии солнечного излучения в тепловую энергию на наиболее эффективных установках солнечного горячего водоснабжения. Оценка технического потенциала проводилась на основе данных о теплопроизводительности таких установок на каждом из участков с однородным уровнем инсоляции и принятых допущениях: о занимаемой солнечными коллекторами площади, равной 1 % от площади рассматриваемой территории, соотношении между площадями тепловых и электрических установок – 0,8 и 0,2 соответственно и КПД топливного устройства - 0,7. Перевод в тонны условного топлива осуществлялся с помощью коэффициента 0,34 т.у.т./ кВт×час.

Наиболее объективным из известных показателей, характеризующих возможность практического использования ресурсов солнечной энергетики, принято считать показатель ее экономического потенциала. Экономическая целесообразность и масштабы применения электрических и тепловых солнечных установок должны определяться исходя из их конкурентоспособности с традиционными источниками энергии. Отсутствие нужного количества необходимой и достоверной информации явилось причиной использования для оценки величины экономического потенциала упрощенных методов, ориентированных на мнения квалифицированных экспертов.

В соответствии с экспертными оценками, экономический потенциал солнечной электроэнергетики был принят равным 0,05% от годового потребления электрической энергии в рассматриваемом регионе (по данным Росстата) с переводом его в тонны условного топлива.

При известной интенсивности солнечной радиации общий энергетический потенциал солнечной радиации может быть исчислен в тоннах условного топлива, киловатт-часах, гигакалориях. Учитывая использование в солнечной энергетике фотоэлектрических элементов для получения электрической энергии и солнечных коллекторов для выработки тепла, общий технический и экономический потенциал в соответствии с рассмотренной выше методикой делят на электроэнергетический и теплоэнергетический (табл. 9).

Рост цен на энергоносители в России заставляет проявлять интерес к дешевым источникам энергии. Наиболее доступной является солнечная энергия. Энергия солнечной радиации, падающая на Землю в 10 000 раз превышает количество вырабатываемой человечеством энергии. Проблемы возникают в технологии сбора энергии и в связи с неравномерностью поступления энергии на гелиоустановки. Поэтому солнечные коллекторы и солнечные батареи применяются или совместно с аккумуляторами энергии или в качестве средства дополнительной подпитки для основной энергетической установки.

Страна у нас обширна и картина распределения солнечной энергии по ее территории весьма разнообразна.

Усредненные данные поступления солнечной энергии

Интенсивность поступления солнечной энергии

Зоны максимальной интенсивности солнечного излучения. На 1 квадратный метр поступает более 5 кВт. час. солнечной энергии в день.

По южной границе России от Байкала до Владивостока, в районе Якутска, на юге Республики Тыва и Республики Бурятия, как это не странно, за Полярным Кругом в восточной части Северной Земли.

Поступление солнечной энергии от 4 до 4,5 кВт. час на 1 кв. метр в день

Краснодарский край, Северный Кавказ, Ростовская область, южная часть Поволжья, южные районы Новосибирской, Иркутской областей, Бурятия, Тыва, Хакассия, Приморский и Хабаровский край, Амурская область, остров Сахалин, обширные территории от Красноярского края до Магадана, Северная Земля, северо-восток Ямало-Ненецкого АО.

От 2,5 до 3 кВт. час на кв. метр в день

По западной дуге - Нижний Новгород, Москва, Санкт-Петербург, Салехард, восточная часть Чукотки и Камчатка.

От 3 до 4 кВт. час на 1 кв. метр в день

Остальная территория страны.

Продолжительность солнечного сияния в год

Наибольшую интенсивность поток энергии имеет в мае, июне и июле. В этот период в средней полосе России на 1 кв. метр поверхности приходится 5 кВт. час в день. Наименьшая интенсивность в декабре-январе, когда 1 кв. метр поверхности приходится 0,7 кВт. час в день.

Особенности установки

Если установить солнечный коллектор под углом 30 градусов к поверхности, то можно обеспечить съем энергии в максимальном и минимальном режиме соответственно 4,5 и 1.5 кВт час на 1 кв. метр. в день.

Распределение интенсивности солнечного излучния в средней полосе России по месяцам

Исходя из приведенных данных можно рассчитать площадь плоских солнечных коллекторов, необходимую для обеспечения горячего водоснабжения семьи из 4-х человек в индивидуальном доме. Нагрев 300 литров воды от 5 градусов до 55 градусов в июне могут обеспечить коллекторы площадью 5,4 квадратного метра, в декабре 18 кв. метров. Если применить более эффективные вакуумные коллекторы, то требуемая площадь коллекторов снижается примерно вдвое.

Покрытие потребностей в ГВС на счет солнечной энергии

На практике солнечные коллекторы желательно применять не в качестве основного источника ГВС, а в качестве устройства для подогрева воды, поступающей в отопительную установку. В этом случае расход топлива резко снижается. При этом обеспечивается бесперебойная подача горячей воды и экономия средств на ГВС и отопление дома, если это дом для постоянного проживания. На дачах, в летнее время, для получения горячей воды, применяются различные виды солнечных коллекторов. От коллекторов заводского изготовления до самодельных устройств, изготовленных из подручных материалов. Различаются они, прежде всего, по эффективности. Заводской эффективнее, но стоит дороже. Практически бесплатно можно сделать коллектор с теплообменником от старого холодильника.

В России установка солнечных коллекторов регламентируется РД 34.20.115-89 "Методические указания по расчету и проектированию систем солнечного обогрева", ВСН 52-86 (в формате RTF, 11 Mb) "Установки горячего солнечного водоснабжения. Нормы проектирования". Имеются рекомендации по использованию нетрадиционных источников энергии в животноводстве, кормопроизводстве, крестьянских хозяйствах и сельском жилищном секторе, разработанные по заявке Минсельхоза в 2002 году. Действуют ГОСТ Р 51595 "Солнечные коллекторы. Технические требования", ГОСТ Р 51594 "Солнечная энергетика. Термины и определения",

В этих документах довольно подробно описаны схемы применяемых солнечных коллекторов и наиболее эффективные способы их применения в различных климатических условиях.

Солнечные коллекторы в Германии

В Германии государство дотирует затраты на установку солнечных коллекторов, поэтому их применение устойчиво растет. В 2006 году было установлено 1 миллион 300 тысяч квадратных метров коллекторов. Из этого количества примерно 10% более дорогие и эффективные вакуумные коллекторы. Общая площадь установленных на сегодняшний день солнечных коллекторов составила примерно 12 миллионов квадратных метров.

Материалы и графики предоставлены компанией Viessmann

«Стандартное солнце» (пиковая мощность излучения, которая достигает поверхности Земли на уровне моря в районе экватора в безоблачный полдень): 1000 Вт/м 2 , или 1 кВт/м 2 .

Это значение обычно используется в характеристиках фотоэлектрических систем. Здесь и далее все цифры приведены для поверхностей, оптимально расположенных относительно солнца (перпендикулярно лучам) в соответствии с широтой. Для горизонтальных поверхностей вы получите меньше солнечного света: чем дальше от экватора, тем ниже плотность солнечной энергии.

Инсоляция (среднее количество часов «стандартного солнца» на протяжении суток): от 4-5 солнечных часов на северо-востоке США до 5-7 часов на юго-западе. Инсоляция часто указывается в кВт·ч, численно вытекая из значения «стандартного солнца» в 1 кВт.

Общее количество излучаемой энергии солнечного света в день на м 2 на уровне моря: (энергия за день) = 1 кВт·ч × (инсоляция в часах). Учитывая среднюю инсоляцию в США, равную 5 солнечным часам, это значение обычно равно 5 кВт·ч/м 2 .

Солнечная мощность , усредненная за весь день: Watts averag = (энергия за день)/24. Для инсоляции в 5 кВт·ч мощность, усредненная за весь день - 5000 Вт/24 = 208 Вт/м 2 . Обратите внимание, что только небольшая часть этой энергии может быть преобразована в электричество из-за не очень высокой эффективности фотоэлектрических систем.

Типовые характеристики фотоэлектрических систем

Средний КПД распространенных коммерческих солнечных панелей: на кристаллическом кремнии (CSI) - 12-17%; тонкопленочных (из аморфного кремния и других материалов) - 8-12%.

Мощность , генерируемая панелью в один квадратный метр: PVwatts = (солнечная мощность) × (средний КПД), где КПД преобразуется в десятичное число.

Пиковая мощность в безоблачный полдень: PVwatts-peak = 1000 Вт × КПД. Как правило, пиковая мощность равна 120170 Вт/м 2 для CSi и 80-120 Вт/м 2 для тонких пленок (TF).

Суммарное усредненное количество энергии , производимой панелью в один м 2 за день: PVday = PVwatts-peak × (Инсоляция в часах). Для инсоляции в 5 часов это значение будет 0.6-0.85 кВт/м 2 для CSi и 0.4-0.6 кВт/м 2 для TF.

Выработанная энергия панели, усредненная за весь день: PVwatts-average = PVday/24. Это примерно 25-35 Вт/м 2 для CSi и 17-25 Вт/м 2 для TF.

Общая энергия , генерируемая фотоэлектрическим модулем на м 2 в год: PVyear = (полная энергия в день) × 365, которая будет равна примерно 219-310 кВт·ч для CSi и 146-219 кВт·ч для TF. Обратите внимание, что инверторы имеют эффективность 95-97%, поэтому фактической электроэнергии будет на 5% меньше.

Ожидаемая стоимость электроэнергии с одного м 2 , сэкономленной за год: Saving = PVyear × 0.95 × (стоимость кВт·ч), где 0.95 - КПД преобразователя и потери в проводах.

В среднем в США стоимость одного кВт·ч электроэнергии равна $0.12, это дает в год $24-35 для CSi и $17-24 для тонких пленок. Таким образом, в лучшем случае, можно будет сэкономить $35 в год на 1 м 2 панели. Эта цифра относится к высокоэффективной системе с номинальной мощностью 170 Вт/м 2 . Учитывая тот факт, что в настоящее время стоимость типичной фотоэлектрической системы составляет $8000 на 1000 Вт, такие установки будут стоить 170/1000 × $8,000 = $1,360 за м 2 . Это означает, что в нашем примере, гипотетический срок окупаемости будет 1360/35 = 39 лет. Никакое оборудование не сможет так долго функционировать. Скидки и кредиты могут сократить это время более чем на половину, однако, все равно, для среднестатистического домашнего хозяйства установка солнечной панели, скорее всего, не окупится. Конечно, это всего лишь пример. В районах с другой инсоляцией и другими затратами на установку срок окупаемости может быть выше или ниже.

Краткая информация о Солнце

  • Диаметр: 1,392,000 км;
  • Масса: 1,989,100 × 10 24 кг;
  • Температура на поверхности: ~5,700 °С;
  • Среднее расстояние от Земли до Солнца: 150 млн. км;
  • Состав по массе: 74% водород, 25% гелий, 1% другие элементы;
  • Яркость (общее количество энергии, излучаемой во всех направлениях): 3.85 × 10 26 Вт (~385 млрд. МВт);
  • Плотность мощности излучения на поверхности Солнца: 63,300 кВт на квадратный метр.

Солнце - неисчерпаемый, экологически безопасный и дешевый источник энергии. Как заявляют эксперты, количество солнечной энергии, которая поступает на поверхность Земли в течение недели, превышает энергию всех мировых запасов нефти, газа, угля и урана 1 . По мнению академика Ж.И. Алферова, «человечество имеет надежный естественный термоядерный реактор - Солнце. Оно является звездой класса «Ж-2», очень средней, каких в Галактике до 150 миллиардов. Но это - наша звезда, и она посылает на Землю огромные мощности, преобразование которых позволяет удовлетворять практически любые энергетические запросы человечества на многие сотни лет». Причем, солнечная энергетика является «чистой» и не оказывает отрицательного влияния на экологию планеты 2 .

Немаловажным моментом является тот факт, что сырьем для изготовления солнечных батарей является один из самых часто встречающихся элементов - кремний. В земной коре кремний - второй элемент после кислорода (29,5% по массе) 3 . По мнению многих ученых, кремний - это «нефть двадцать первого века»: в течение 30 лет один килограмм кремния в фотоэлектрической станции вырабатывает столько электричества, сколько 75 тонн нефти на тепловой электростанции.


Однако некоторые эксперты полагают, что солнечную энергетику нельзя назвать экологически безопасной ввиду того, что производство чистого кремния для фотобатарей является весьма «грязным» и очень энергозатратным производством. Наряду с этим, строительство солнечных электростанций требует отведения обширных земель, сравнимых по площади с водохранилищами ГЭС. Еще одним недостатком солнечной энергетики, по мнению специалистов, является высокая волатильность. Обеспечение эффективной работы энергосистемы, элементами которых являюстя солнечные электростанции, возможно при условии:
- наличия значительных резервных мощностей, использующих традиционные энергоносители, которые можно подключить ночью или в пасмурные дни;
- проведения масштабной и дорогостоящей модернизации электросетей 4 .

Несмотря на указанный недостаток, солнечная энергетика продолжает свое развитие в мире. Прежде всего, ввиду того, что лучистая энергия будет дешеветь и уже через несколько лет составит весомую конкуренцию нефти и газу.

В настоящий момент в мире существуют фотоэлектрические установки , преобразующие солнечную энергию в электрическую на основе метода прямого преобразования, и термодинамические установки , в которых солнечная энергия сначала преобразуется в тепло, затем в термодинамическом цикле тепловой машины преобразуется в механическую энергию, а в генераторе преобразуется в электрическую.

Солнечные элементы как источник энергии могут применяться:
- в промышленности (авиапромышленность, автомобилестроение и т.п.),
- в сельском хозяйстве,
- в бытовой сфере,
- в строительной сфере (например, эко-дома),
- на солнечных электростанциях,
- в автономных системах видеонаблюдения,
- в автономных системах освещения,
- в космической отрасли.

По данным Института Энергетической стратегии, теоретический потенциал солнечной энергетики в России составляет более 2300 млрд. тонн условного топлива, экономический потенциал - 12,5 млн. т.у.т. Потенциал солнечной энергии, поступающей на территорию России в течение трех дней, превышает энергию всего годового производства электроэнергии в нашей стране.
Ввиду расположения России (между 41 и 82 градусами северной широты) уровень солнечной радиации существенно варьируется: от 810 кВт-час/м 2 в год в отдаленных северных районах до 1400 кВт-час/м 2 в год в южных районах. На уровень солнечной радиации оказывают влияние и большие сезонные колебания: на ширине 55 градусов солнечная радиация в январе составляет 1,69 кВт-час/м 2 , а в июле - 11,41 кВт-час/м 2 в день.

Потенциал солнечной энергии наиболее велик на юго-западе (Северный Кавказ, район Черного и Каспийского морей) и в Южной Сибири и на Дальнем Востоке.

Наиболее перспективные регионы в плане использования солнечной энергетики: Калмыкия, Ставропольский край, Ростовская область, Краснодарский край, Волгоградская область, Астраханская область и другие регионы на юго-западе, Алтай, Приморье, Читинская область, Бурятия и другие регионы на юго-востоке. Причем некоторые районы Западной и Восточной Сибири и Дальнего Востока превосходит уровень солнечной радиации южных регионов. Так, например, в Иркутске (52 градуса северной широты) уровень солнечной радиации достигает 1340 кВТ-час/м 2 , тогда как в Республике Якутия-Саха (62 градуса северной широты) данный показатель равен 1290 кВт-час/м 2 . 5

В настоящее время Россия обладает передовыми технологиями по преобразованию солнечной энергии в электрическую. Есть ряд предприятий и организаций, которые разработали и совершенствуют технологии фотоэлектрических преобразователей: как на кремниевых, так и на многопереходных структурах. Есть ряд разработок использования концентрирующих систем для солнечных электростанций.

Законодательная база в сфере поддержки развития солнечной энергетики в России находится в зачаточном состоянии. Однако первые шаги уже сделаны:
- 3 июля 2008г.: Постановление Правительства №426 «О квалификации генерирующего объекта, функционирующего на основе использования возобновляемых источников энергии»;
- 8 января 2009г.: Распоряжение Правительства РФ N 1-р «Об Основных направлениях государственной политики в сфере повышения энергетической эффективности электроэнергетики на основе использования возобновляемых источников энергии на период до 2020 г.»

Были утверждены целевые показатели по увеличению к 2015 и 2020 годам доли ВИЭ в общем уровне российского энергобаланса до 2,5% и 4,5% соответственно 6 .

По разным оценкам, на данный момент в России суммарный объем введенных мощностей солнечной генерации составляет не более 5 МВт, большая часть из которых приходится на домохозяйства. Самым крупным промышленным объектом в российской солнечной энергетике является введенная в 2010 году солнечная электростанция в Белгородской области мощностью 100 кВт (для сравнения, самая крупнейшая солнечная электростанция в мире располагается в Канаде мощностью 80000 кВт).

В настоящий момент в России реализуется два проекта: строительство солнечных парков в Ставропольском крае (мощность - 12 МВТ), и в Республике Дагестан (10 МВт) 7 . Несмотря на отсутствие поддержки возобновляемой энергетики, ряд компаний реализует мелкие проекты в сфере солнечной энергетике. К примеру, «Сахаэнерго» установило маленькую станцию в Якутии мощностью 10 кВт.

Существуют маленькие установки в Москве: в Леонтьевском переулке и на Мичуринском проспекте подъезды и дворы нескольких домов освещаются с помощью солнечных модулей, что сократило расходы на освещение на 25%. На Тимирязевской улице солнечные батареи установлены на крыше одной из автобусных остановок, которые обеспечивают работу справочно-информационной транспортной системы и Wi-Fi.

Развитие солнечной энергетики в России обусловлено рядом факторов:

1) климатические условия: данный фактор влияет не только на год достижения сетевого паритета, но и на выбор той технологии солнечной установки, которая наилучшим образом подходит для конкретного региона;

2) государственная поддержка: наличие законодательно установленных экономических стимулов солнечной энергетики оказывает решающее значение на
ее развитие. Среди видов государственной поддержки, успешно применяющихся в ряде стран Европы и США, можно выделить: льготный тариф для солнечные электростанции, субсидии на строительство солнечных электростанций, различные варианты налоговых льгот, компенсация части расходов по обслуживанию кредитов на приобретение солнечных установок;

3) стоимость СФЭУ (солнечные фотоэлектрические установки): сегодня солнечные электростанции являются одной из наиболее дорогих используемых технологий производства электроэнергии. Однако по мере снижения стоимости 1 кВт*ч выработанной электроэнергии солнечная энергетика становится конкурентоспособной. От снижения стоимости 1Вт установленной мощности СФЭУ (~3000$ в 2010 году) зависит спрос на СФЭУ. Снижение стоимости достигается за счет повышения КПД, снижения технологических затрат и снижения рентабельности производства (влияние конкуренции). Потенциал снижения стоимости 1 кВт мощности зависит от технологии и лежит в диапазоне от 5% до 15% в год;

4) экологические нормы: на рынок солнечной энергетики положительно может повлиять ужесточение экологических норм (ограничений и штрафов) вследствие возможного пересмотра Киотского протокола. Совершенствование механизмов продажи квот на выбросы может дать новый экономический стимул для рынка СФЭУ;

5) баланс спроса и предложения электроэнергии: реализация существующих амбициозных планов по строительству и реконструкции генерирующих и электросетевых
мощностей компаний, выделившихся из РАО «ЕЭС России» в ходе реформы отрасли, существенно увеличит предложение электроэнергии и может усилить давление на цену
на оптовом рынке. Однако выбытие старых мощностей и одновременное повышение спроса повлечет за собой увеличение цены;

6) наличие проблем с технологическим присоединением: задержки с выполнением заявок на технологическое присоединение к централизованной системе электроснабжения являются стимулом к переходу к альтернативным источникам энергии, в том числе к СФЭУ. Такие задержки определяются как объективной нехваткой мощностей, так и неэффективностью организации технологического присоединения сетевыми компаниями или недостатком финансирования технологического присоединения из тарифа;

7) инициативы местных властей: региональные и муниципальные органы управления могут реализовывать собственные программы по развитию солнечной энергетики или, более широко, возобновляемых/нетрадиционных источников энергии. Сегодня такие программы уже реализуются в Красноярском и Краснодарском краях, Республике Бурятия и др.;

8) развитие собственного производства: российское производство СФЭУ может оказать положительное влияние на развитие российского потребления солнечной энергетики. Во-первых, благодаря собственному производству усиливается общая осведомленность населения о наличии солнечных технологий и их популярность. Во-вторых, снижается стоимость СФЭУ для конечных потребителей за счет снижения промежуточных звеньев дистрибьюторской цепи и за счет снижения транспортной составляющей 8 .

6 http://www.ng.ru/energy/2011-10-11/9_sun_energy.html
7 Организатор - компания ООО «Хевел», учредителями которой являются Группа компаний «Ренова» (51%) и Государственная корпорация «Российская корпорация нанотехнологий» (49%).